poj1065(Wooden Sticks)
Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1 <= n <= 5000 , that represents the number of wooden sticks in the test case, and the second line contains 2n positive integers l1 , w1 , l2 , w2 ,..., ln , wn , each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1
Sample Output
2 1 3
有一些木棍,给出每根的长度和重量,依次处理这些木棍,如果当前处理的木棍长度和重量都大于等于前一根木棍,就不需要花时间,否则花费一个单位时间,安排适当的处理顺序,使得总花费最小。解法:贪心思想,首先对木棍排序,按照长度从小到大排序,相同时重量小的在前。用变量flag标记是否已经被处理过。然后依次处理,处理第i根时如果flag=0,那么时间加1,并且遍历之后的木棍,找出最大的上升子序列,也就是全都不需要花费时间的木棍,标记为flag=1即可。
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <map>
#include <vector>
#include <list>
#include <set>
#include <stack>
#include <queue>
#include <deque>
#include <algorithm>
#include <functional>
#include <iomanip>
#include <limits>
#include <new>
#include <utility>
#include <iterator>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double EPS = 1e-8;
const int MAXN = 5010;
int dx[] = {0, 1, 0, -1}, dy[] = {-1, 0, 1, 0};
struct sticks
{
int l, w;
bool flag;
bool operator < (const sticks& b) const
{
if (l == b.l)
return w < b.w;
return l < b.l;
}
};
sticks st[MAXN];
int main()
{
int kase;
cin >> kase;
while (kase--)
{
int n;
cin >> n;
for (int i = 0; i < n; ++i)
{
scanf("%d%d", &st[i].l, &st[i].w);
st[i].flag = false;
}
sort(st, st+n);
int time = 0;
for (int i = 0; i < n; ++i)
if (!st[i].flag)
{
time++;
st[i].flag = true;
int w = st[i].w;
for (int j = i+1; j < n; ++j)
if (!st[j].flag && st[j].w >= w)
{
st[j].flag = true;
w = st[j].w;
}
}
cout << time << endl;
}
return 0;
}
算法码上来 文章被收录于专栏
公众号「算法码上来」。godweiyang带你学习算法,不管是编程算法,还是深度学习、自然语言处理算法都一网打尽,更有各种计算机新鲜知识和你分享。别急,算法码上来。