计算系数 Editional
计算系数
https://ac.nowcoder.com/acm/problem/16596
原题链接:https://ac.nowcoder.com/acm/problem/16596
题目描述:
给定一个多项式(ax+by)k,请求出多项式展开后xnym项的系数。
输入描述:
共一行,包含5个整数,分别为a,b,k,n,m,每两个整数之间用一个空格隔开。
输出描述:
输出共1行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007取模后的结果。
示例1
输入
1 1 3 1 2
输出
3
备注:
对于30%的数据,有0≤k≤10;
对于50%的数据,有a=1,b=1;
对于100%的数据,有0≤k≤1,000,0≤n,m≤k,且n+m=k,0≤a,b≤1,000,000。
记忆化的必要性
易得本题公式:ans = C(k,n) a^n b^m
若我们维护杨辉三角,就有O(k^2)的时空复杂度。
这样太慢了。
我们进一步观察可得:
ans = a^n b^m k! / (k-n)! / n!
在模10007的意义下,我们可以计算逆元。
时空复杂度降到O(k)。
#include<cstdio> #include<cstring> using namespace std; #define mod 10007 int rec[1010][1010]; //使用递归组合数必须配个记忆化 ,不加卡成dog int a,b,k,n,m; inline int in(){ int x=0;char ch=getchar(); while(ch>'9' || ch<'0') ch=getchar(); while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar(); return x; } int C(int n,int r){ if(n==r || r==0) return rec[n][r]=1; if(rec[n][r]) return rec[n][r]; return rec[n][r]=(C(n-1,r)+C(n-1,r-1))%mod; } long long power(long long x,int k){ //10006*10006是可能爆 int的 long long ans=1; while(k){ if(k&1) ans=ans*x%mod; x=x*x%mod; k>>=1; } return ans; } int main(){ a=in();b=in();k=in();n=in();m=in(); int ans=power(a,n)*power(b,m)%mod*C(k,m)%mod; printf("%d",ans); return 0; }