B--Minimum--HihoCoder - 1586
题目
You are given a list of integers a0, a1, …, a2^k-1.
You need to support two types of queries:
1. Output Minx,y∈[l,r] {ax∙ay}.
2. Let ax=y.
Input
The first line is an integer T, indicating the number of test cases. (1≤T≤10).
For each test case:
The first line contains an integer k (0 ≤ k ≤ 17).
The following line contains 2k integers, a0, a1, …, a2^k-1 (-2k ≤ ai < 2k).
The next line contains a integer (1 ≤ Q < 2k), indicating the number of queries. Then next Q lines, each line is one of:
1. 1 l r: Output Minx,y∈[l,r]{ax∙ay}. (0 ≤ l ≤ r < 2k)
2. 2 x y: Let ax=y. (0 ≤ x < 2k, -2k ≤ y < 2k)
Output
For each query 1, output a line contains an integer, indicating the answer.
Sample Input
1 3 1 1 2 2 1 1 2 2 5 1 0 7 1 1 2 2 1 2 2 2 2 1 1 2
Sample Output
1 1 4
题目大意:
给你一个K,然后给你2的K次方个数,然后给你一个N,表示有N个操作,每个操作有三个数,P,X,Y;
P==1,表示让你求X到Y个数之间任意两个数的乘积的最小值,
P==2,表示让你把地X个数变成Y;
思路:
这是一道线段树的模板题,单点更新,让你查询区间任意两个数的乘积最小值,我们可以先建线段树,然后维护每个区间的最大值和最小值(因为有可能区间的数有负数),找到我们所需要的区间,观察他们的最大值和最小值,
都为正,答案为最小值乘积,都为负,答案为最大值乘积,否则答案为最大值乘以最小值。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int a[140000];
long long p,x,y,ans,ansd;
struct zxc
{
int l,r;
long long maxx,minn;
}tree[550000];
void build(int l,int r,int k)
{
tree[k].l=l;
tree[k].r=r;
if(l==r)
{
tree[k].minn=a[l];
tree[k].maxx=a[r];
return;
}
int m=(tree[k].l+tree[k].r)/2;
build(l,m,2*k);
build(m+1,r,2*k+1);
tree[k].maxx=max(tree[2*k].maxx,tree[2*k+1].maxx);
tree[k].minn=min(tree[2*k].minn,tree[2*k+1].minn);
}
void ask1(int l,int r,int k)
{
if(tree[k].l>=x&&tree[k].r<=y)
{
ans=min(ans,tree[k].minn);
return ;
}
int m=(tree[k].l+tree[k].r)/2;
if(x<=m)
{
ask1(l,r,2*k);
}
if(y>m)
{
ask1(l,r,2*k+1);
}
}
void ask2(int l,int r,int k)
{
if(tree[k].l>=x&&tree[k].r<=y)
{
ansd=max(ansd,tree[k].maxx);
return ;
}
int m=(tree[k].l+tree[k].r)/2;
if(x<=m)
{
ask2(l,r,2*k);
}
if(y>m)
{
ask2(l,r,2*k+1);
}
}
void add(int q,int z,int k)
{
if(tree[k].l==tree[k].r)
{
tree[k].maxx=z;
tree[k].minn=z;
return;
}
int m=(tree[k].l+tree[k].r)/2;
if(m<q)
{
add(q,z,2*k+1);
}
else
{
add(q,z,2*k);
}
tree[k].maxx=max(tree[2*k].maxx,tree[2*k+1].maxx);
tree[k].minn=min(tree[2*k].minn,tree[2*k+1].minn);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
int w=1;
scanf("%d",&n);
w=w<<n;
memset(a,0,sizeof(a));
for(int i=1;i<=w;i++)
{
scanf("%d",&a[i]);
}
build(1,w,1);
int m;
scanf("%d",&m);
while(m--)
{
scanf("%lld%lld%lld",&p,&x,&y);
x++;
if(p==1)
{
y++;
ans=0x3f3f3f3f;
ansd=-0x3f3f3f3f;
ask1(x,y,1);
ask2(x,y,1);
if(ans>0&&ansd>0)
{
printf("%lld\n",ans*ans);
}
else if(ans<0&&ansd<0)
{
printf("%lld\n",ansd*ansd);
}
else
{
printf("%lld\n",ans*ansd);
}
}
else
{
add(x,y,1);
}
}
}
return 0;
}