动态规划
递归和动态规划都是将原问题拆成多个子问题然后求解,他们之间最本质的区别是,动态规划保存了子问题的解,避免重复计算。
斐波那契数列
1. 爬楼梯
题目描述:有 N 阶楼梯,每次可以上一阶或者两阶,求有多少种上楼梯的方法。
定义一个数组 dp 存储上楼梯的方法数(为了方便讨论,数组下标从 1 开始),dp[i] 表示走到第 i 个楼梯的方法数目。
第 i 个楼梯可以从第 i-1 和 i-2 个楼梯再走一步到达,走到第 i 个楼梯的方法数为走到第 i-1 和第 i-2 个楼梯的方法数之和。
考虑到 dp[i] 只与 dp[i - 1] 和 dp[i - 2] 有关,因此可以只用两个变量来存储 dp[i - 1] 和 dp[i - 2],使得原来的 O(N) 空间复杂度优化为 O(1) 复杂度。
public int climbStairs(int n) { if (n <= 2) { return n; } int pre2 = 1, pre1 = 2; for (int i = 2; i < n; i++) { int cur = pre1 + pre2; pre2 = pre1; pre1 = cur; } return pre1; }
2. 强盗抢劫
题目描述:抢劫一排住户,但是不能抢邻近的住户,求最大抢劫量。
定义 dp 数组用来存储最大的抢劫量,其中 dp[i] 表示抢到第 i 个住户时的最大抢劫量。
由于不能抢劫邻近住户,如果抢劫了第 i -1 个住户,那么就不能再抢劫第 i 个住户,所以
public int rob(int[] nums) { int pre2 = 0, pre1 = 0; for (int i = 0; i < nums.length; i++) { int cur = Math.max(pre2 + nums[i], pre1); pre2 = pre1; pre1 = cur; } return pre1; }
3. 强盗在环形街区抢劫
public int rob(int[] nums) { if (nums == null || nums.length == 0) { return 0; } int n = nums.length; if (n == 1) { return nums[0]; } return Math.max(rob(nums, 0, n - 2), rob(nums, 1, n - 1)); } private int rob(int[] nums, int first, int last) { int pre2 = 0, pre1 = 0; for (int i = first; i <= last; i++) { int cur = Math.max(pre1, pre2 + nums[i]); pre2 = pre1; pre1 = cur; } return pre1; }
4. 信件错排
题目描述:有 N 个 信 和 信封,它们被打乱,求错误装信方式的数量。
定义一个数组 dp 存储错误方式数量,dp[i] 表示前 i 个信和信封的错误方式数量。假设第 i 个信装到第 j 个信封里面,而第 j 个信装到第 k 个信封里面。根据 i 和 k 是否相等,有两种情况:
- i==k,交换 i 和 k 的信后,它们的信和信封在正确的位置,但是其余 i-2 封信有 dp[i-2] 种错误装信的方式。由于 j 有 i-1 种取值,因此共有 (i-1)*dp[i-2] 种错误装信方式。
- i != k,交换 i 和 j 的信后,第 i 个信和信封在正确的位置,其余 i-1 封信有 dp[i-1] 种错误装信方式。由于 j 有 i-1 种取值,因此共有 (i-1)*dp[i-1] 种错误装信方式。
综上所述,错误装信数量方式数量为:
5. 母牛生产
题目描述:假设农场中成熟的母牛每年都会生 1 头小母牛,并且永远不会死。第一年有 1 只小母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 N,求 N 年后牛的数量。
第 i 年成熟的牛的数量为:
矩阵路径
1. 矩阵的最小路径和
[[1,3,1], [1,5,1], [4,2,1]] Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.
题目描述:求从矩阵的左上角到右下角的最小路径和,每次只能向右和向下移动。
public int minPathSum(int[][] grid) { if (grid.length == 0 || grid[0].length == 0) { return 0; } int m = grid.length; //行 int n = grid[0].length; //列 int[] dp = new int[n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (j == 0) { dp[j] = dp[j]; // 只能从上侧走到该位置 } else if (i == 0) { dp[j] = dp[j - 1]; // 只能从左侧走到该位置 } else { dp[j] = Math.min(dp[j - 1], dp[j]); } dp[j] += grid[i][j]; } } return dp[n - 1]; }
思路:
单纯从问题来看,这是一个非常复杂的问题,需要大量的遍历操作。分析得知:每一个位置map[i][j]只可能来自map[i][j-1]向右走一个结点或者map[i-1][j]向下走一个结点,因此只需要比较到达map[i][j-1]和到达map[i-1][j]的路径较小值加上map[i][j]就是所求答案,这时考虑使用递归,但是可知,这种递归处理属于暴力搜索的方式,因为没有对任何已经计算出来的结果进行保存和复用,因此上面这种思路是低效或者不符合要求的,应该使用动态规划来解决问题。
动态规划思想:先求简单值在逐步递推求复杂值,后面的值通过前面的结果来求得。
思路:求出到达每一个结点map[i][j]的最小路径将其保存在数组dp[i][j]中,求任意dp[i][j]的值完全依赖于dp[i-1][j]和dp[i][j-1],因此先求出dp[][]数组的第1行和第1列,然后从上到下,从左到右计算出每一个位置的结果值。
①创建一个二维数组记录每个位置的最小路径dp[n][m];
②求出dp[][]中第1行和第1列的结果填充到dp[][]中;注意:在动态规划问题中第1行和第1列需要手动求出,需要根据问题的要求进行求解,一般第1行和第1列的求解很简单。
③从上到下,从左到右,通过二重循环求出任意dp[i][j]的结果填充到dp[][]中;注意:二重循环中i,j都是从1开始进行遍历,即从矩阵第2行第2列的位置开始填充。
④最后dp[n-1][m-1]就是所求的结果。
class Solution { public int minPathSum(int[][] grid) { int m = grid.length, n = grid[0].length; //特殊输入 if (grid == null || m <= 0 || n <= 0) { return 0; } //①创建动态规划结果矩阵dp[][] int[][] dp = new int[m][n]; //②求解第1行第1列的结果值 dp[0][0] = grid[0][0]; //求第1列的结果值 for (int i = 1; i < m; i++) { dp[i][0] = dp[i - 1][0] + grid[i][0]; } //求第1行的结果值 for (int i = 1; i < n; i++) { dp[0][i] = dp[0][i - 1] + grid[0][i]; } //③从上到下,从左到右求任意dp[i][j] for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; } } //④返回右下角的结果值 return dp[m - 1][n - 1]; } }
2. 矩阵的总路径数
题目描述:统计从矩阵左上角到右下角的路径总数,每次只能向右或者向下移动。
class Solution { public int uniquePaths(int m, int n) { if (m == 0 && n == 0) { return 0; } int[][] dp = new int[m][n]; for (int i = 0; i < m; i++) { dp[i][0] = 1; } for (int i = 0; i < n; i++) { dp[0][i] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } return dp[m - 1][n - 1]; } }
public int uniquePaths(int m, int n) { int[] dp = new int[n]; Arrays.fill(dp, 1); for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[j] = dp[j] + dp[j - 1]; } } return dp[n - 1]; }
也可以直接用数学公式求解,这是一个组合问题。机器人总共移动的次数 S=m+n-2,向下移动的次数 D=m-1,那么问题可以看成从 S 中取出 D 个位置的组合数量,这个问题的解为 C(S, D)。
public int uniquePaths(int m, int n) { int S = m + n - 2; // 总共的移动次数 int D = m - 1; // 向下的移动次数 long ret = 1; for (int i = 1; i <= D; i++) { ret = ret * (S - D + i) / i; } return (int) ret; }
数组区间
1. 数组区间和
303. Range Sum Query - Immutable (Easy)
Given nums = [-2, 0, 3, -5, 2, -1] sumRange(0, 2) -> 1 sumRange(2, 5) -> -1 sumRange(0, 5) -> -3
求区间 i ~ j 的和,可以转换为 sum[j + 1] - sum[i],其中 sum[i] 为 0 ~ i - 1 的和。
class NumArray { private int[] sums; public NumArray(int[] nums) { if (nums == null || nums.length == 0) { return; } sums = new int[nums.length + 1]; for (int i = 1; i <= nums.length; i++) { sums[i] = sums[i - 1] + nums[i - 1]; } } public int sumRange(int i, int j) { return sums[j + 1] - sums[i]; } }
2. 数组中等差递增子区间的个数
413. Arithmetic Slices (Medium)
A = [0, 1, 2, 3, 4] return: 6, for 3 arithmetic slices in A: [0, 1, 2], [1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3, 4], [ 1, 2, 3, 4], [2, 3, 4]
dp[i] 表示以 A[i] 为结尾的等差递增子区间的个数。
当 A[i] - A[i-1] == A[i-1] - A[i-2],那么 [A[i-2], A[i-1], A[i]] 构成一个等差递增子区间。而且在以 A[i-1] 为结尾的递增子区间的后面再加上一个 A[i],一样可以构成新的递增子区间。
dp[2] = 1 [0, 1, 2] dp[3] = dp[2] + 1 = 2 [0, 1, 2, 3], // [0, 1, 2] 之后加一个 3 [1, 2, 3] // 新的递增子区间 dp[4] = dp[3] + 1 = 3 [0, 1, 2, 3, 4], // [0, 1, 2, 3] 之后加一个 4 [1, 2, 3, 4], // [1, 2, 3] 之后加一个 4 [2, 3, 4] // 新的递增子区间
综上,在 A[i] - A[i-1] == A[i-1] - A[i-2] 时,dp[i] = dp[i-1] + 1。
因为递增子区间不一定以最后一个元素为结尾,可以是任意一个元素结尾,因此需要返回 dp 数组累加的结果。
public int numberOfArithmeticSlices(int[] A) { if (A == null || A.length == 0) { return 0; } int n = A.length; int[] dp = new int[n]; for (int i = 2; i < n; i++) { if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) { dp[i] = dp[i - 1] + 1; } } int total = 0; for (int cnt : dp) { total += cnt; } return total; }
分割整数
1. 分割整数的最大乘积
题目描述:For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).
public class Solution { public int integerBreak(int n) { int []dp = new int[n + 1]; dp[1] = 0; //dp[i]代表以以i为结尾的最大乘积。 for (int i = 2;i <=n;i ++) { for (int j = 1;j < i;j ++) { //这一部是将n分成i和j两个数,要么取j要么取j分成的数。 //要么取i-j要么取i-j拆分成的数,谁大就取谁。 //再将这两部分相乘。并且dp是从左往右算的,可以保证有序。 //为什么要加dp[i],因为如果不加dp[i]记录的是最后一个值,而不是最大值 dp[i] = Math.max(dp[i],Math.max(j,dp[j])*Math.max(i - j,dp[i - j])); } } return dp[n]; } }
public int integerBreak(int n) { int[] dp = new int[n + 1]; dp[1] = 1; for (int i = 2; i <= n; i++) { for (int j = 1; j <= i - 1; j++) { dp[i] = Math.max(dp[i], Math.max(j * dp[i - j], j * (i - j))); } } return dp[n]; }
2. 按平方数来分割整数
题目描述:For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
思路分析:
将n以内的平方数都求出来,然后设置数组dp[i],表示整数i按平方数分割的个数,则dp[n]表示整数n按平方数分割的个数,那么我们可以得到状态转移方程dp[i]=dp[i-square]+1。
public int numSquares(int n) { List<Integer> squareList = generateSquareList(n);//生成n以内的所有平方数 int[] dp = new int[n + 1]; for (int i = 1; i <= n; i++) { int min = Integer.MAX_VALUE; for (int square : squareList) { if (square > i) {//平方数比当前的n还大,那么退出 break; } min = Math.min(min, dp[i - square] + 1); } dp[i] = min; } return dp[n]; } private List<Integer> generateSquareList(int n) {//生成平方数 List<Integer> squareList = new ArrayList<>(); int diff = 3; int square = 1; while (square <= n) { squareList.add(square); square += diff; diff += 2; } return squareList; }
3. 分割整数构成字母字符串
题目描述:Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).
public int numDecodings(String s) { if (s == null || s.length() == 0) { return 0; } int n = s.length(); int[] dp = new int[n + 1]; dp[0] = 1; dp[1] = s.charAt(0) == '0' ? 0 : 1; for (int i = 2; i <= n; i++) { int one = Integer.valueOf(s.substring(i - 1, i)); if (one != 0) { dp[i] += dp[i - 1]; } if (s.charAt(i - 2) == '0') { continue; } int two = Integer.valueOf(s.substring(i - 2, i)); if (two <= 26) { dp[i] += dp[i - 2]; } } return dp[n]; }
最长递增子序列
已知一个序列 {S1, S2,...,Sn},取出若干数组成新的序列 {Si1, Si2,..., Sim},其中 i1、i2 ... im 保持递增,即新序列中各个数仍然保持原数列中的先后顺序,称新序列为原序列的一个 子序列 。
如果在子序列中,当下标 ix > iy 时,Six > Siy,称子序列为原序列的一个 递增子序列 。
定义一个数组 dp 存储最长递增子序列的长度,dp[n] 表示以 Sn 结尾的序列的最长递增子序列长度。对于一个递增子序列 {Si1, Si2,...,Sim},如果 im < n 并且 Sim < Sn,此时 {Si1, Si2,..., Sim, Sn} 为一个递增子序列,递增子序列的长度增加 1。满足上述条件的递增子序列中,长度最长的那个递增子序列就是要找的,在长度最长的递增子序列上加上 Sn 就构成了以 Sn 为结尾的最长递增子序列。因此 dp[n] = max{ dp[i]+1 | Si < Sn && i < n} 。
因为在求 dp[n] 时可能无法找到一个满足条件的递增子序列,此时 {Sn} 就构成了递增子序列,需要对前面的求解方程做修改,令 dp[n] 最小为 1,即:
对于一个长度为 N 的序列,最长递增子序列并不一定会以 SN 为结尾,因此 dp[N] 不是序列的最长递增子序列的长度,需要遍历 dp 数组找出最大值才是所要的结果,max{ dp[i] | 1 <= i <= N} 即为所求。
1. 最长递增子序列
300. Longest Increasing Subsequence (Medium)
public int lengthOfLIS(int[] nums) { int n = nums.length; int[] dp = new int[n]; for (int i = 0; i < n; i++) { int max = 1; for (int j = 0; j < i; j++) { if (nums[i] > nums[j]) { max = Math.max(max, dp[j] + 1); } } dp[i] = max; } return Arrays.stream(dp).max().orElse(0); }
使用 Stream 求最大值会导致运行时间过长,可以改成以下形式:
int ret = 0; for (int i = 0; i < n; i++) { ret = Math.max(ret, dp[i]); } return ret;
以上解法的时间复杂度为 O(N2),可以使用二分查找将时间复杂度降低为 O(NlogN)。
定义一个 tails 数组,其中 tails[i] 存储长度为 i + 1 的最长递增子序列的最后一个元素。对于一个元素 x,
- 如果它大于 tails 数组所有的值,那么把它添加到 tails 后面,表示最长递增子序列长度加 1;
- 如果 tails[i-1] < x <= tails[i],那么更新 tails[i] = x。
例如对于数组 [4,3,6,5],有:
tails len num [] 0 4 [4] 1 3 [3] 1 6 [3,6] 2 5 [3,5] 2 null
可以看出 tails 数组保持有序,因此在查找 Si 位于 tails 数组的位置时就可以使用二分查找。
public int lengthOfLIS(int[] nums) { int n = nums.length; int[] tails = new int[n]; int len = 0; for (int num : nums) { int index = binarySearch(tails, len, num); tails[index] = num; if (index == len) { len++; } } return len; } private int binarySearch(int[] tails, int len, int key) { int l = 0, h = len; while (l < h) { int mid = l + (h - l) / 2; if (tails[mid] == key) { return mid; } else if (tails[mid] > key) { h = mid; } else { l = mid + 1; } } return l; }
2. 一组整数对能够构成的最长链
646. Maximum Length of Pair Chain (Medium)
Input: [[1,2], [2,3], [3,4]] Output: 2 Explanation: The longest chain is [1,2] -> [3,4]
题目描述:对于 (a, b) 和 (c, d) ,如果 b < c,则它们可以构成一条链。
public int findLongestChain(int[][] pairs) { if (pairs == null || pairs.length == 0) { return 0; } Arrays.sort(pairs, (a, b) -> (a[0] - b[0])); int n = pairs.length; int[] dp = new int[n]; Arrays.fill(dp, 1); for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (pairs[j][1] < pairs[i][0]) { dp[i] = Math.max(dp[i], dp[j] + 1); } } } return Arrays.stream(dp).max().orElse(0); }
3. 最长摆动子序列
376. Wiggle Subsequence (Medium)
Input: [1,7,4,9,2,5] Output: 6 The entire sequence is a wiggle sequence. Input: [1,17,5,10,13,15,10,5,16,8] Output: 7 There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8]. Input: [1,2,3,4,5,6,7,8,9] Output: 2
要求:使用 O(N) 时间复杂度求解。
public int wiggleMaxLength(int[] nums) { if (nums == null || nums.length == 0) { return 0; } int up = 1, down = 1; for (int i = 1; i < nums.length; i++) { if (nums[i] > nums[i - 1]) { up = down + 1; } else if (nums[i] < nums[i - 1]) { down = up + 1; } } return Math.max(up, down); }
最长公共子序列
对于两个子序列 S1 和 S2,找出它们最长的公共子序列。
定义一个二维数组 dp 用来存储最长公共子序列的长度,其中 dp[i][j] 表示 S1 的前 i 个字符与 S2 的前 j 个字符最长公共子序列的长度。考虑 S1i 与 S2j 值是否相等,分为两种情况:
- 当 S1i==S2j 时,那么就能在 S1 的前 i-1 个字符与 S2 的前 j-1 个字符最长公共子序列的基础上再加上 S1i 这个值,最长公共子序列长度加 1,即 dp[i][j] = dp[i-1][j-1] + 1。
- 当 S1i != S2j 时,此时最长公共子序列为 S1 的前 i-1 个字符和 S2 的前 j 个字符最长公共子序列,或者 S1 的前 i 个字符和 S2 的前 j-1 个字符最长公共子序列,取它们的最大者,即 dp[i][j] = max{ dp[i-1][j], dp[i][j-1] }。
综上,最长公共子序列的状态转移方程为:
对于长度为 N 的序列 S1 和长度为 M 的序列 S2,dp[N][M] 就是序列 S1 和序列 S2 的最长公共子序列长度。
与最长递增子序列相比,最长公共子序列有以下不同点:
- 针对的是两个序列,求它们的最长公共子序列。
- 在最长递增子序列中,dp[i] 表示以 Si 为结尾的最长递增子序列长度,子序列必须包含 Si ;在最长公共子序列中,dp[i][j] 表示 S1 中前 i 个字符与 S2 中前 j 个字符的最长公共子序列长度,不一定包含 S1i 和 S2j。
- 在求最终解时,最长公共子序列中 dp[N][M] 就是最终解,而最长递增子序列中 dp[N] 不是最终解,因为以 SN 为结尾的最长递增子序列不一定是整个序列最长递增子序列,需要遍历一遍 dp 数组找到最大者。
public int lengthOfLCS(int[] nums1, int[] nums2) { int n1 = nums1.length, n2 = nums2.length; int[][] dp = new int[n1 + 1][n2 + 1]; for (int i = 1; i <= n1; i++) { for (int j = 1; j <= n2; j++) { if (nums1[i - 1] == nums2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return dp[n1][n2]; }
0-1 背包
有一个容量为 N 的背包,要用这个背包装下物品的价值最大,这些物品有两个属性:体积 w 和价值 v。
定义一个二维数组 dp 存储最大价值,其中 dp[i][j] 表示前 i 件物品体积不超过 j 的情况下能达到的最大价值。设第 i 件物品体积为 w,价值为 v,根据第 i 件物品是否添加到背包中,可以分两种情况讨论:
- 第 i 件物品没添加到背包,总体积不超过 j 的前 i 件物品的最大价值就是总体积不超过 j 的前 i-1 件物品的最大价值,dp[i][j] = dp[i-1][j]。
- 第 i 件物品添加到背包中,dp[i][j] = dp[i-1][j-w] + v。
第 i 件物品可添加也可以不添加,取决于哪种情况下最大价值更大。因此,0-1 背包的状态转移方程为:
// W 为背包总体积 // N 为物品数量 // weights 数组存储 N 个物品的重量 // values 数组存储 N 个物品的价值 public int knapsack(int W, int N, int[] weights, int[] values) { int[][] dp = new int[N + 1][W + 1]; for (int i = 1; i <= N; i++) { int w = weights[i - 1], v = values[i - 1]; for (int j = 1; j <= W; j++) { if (j >= w) { dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w] + v); } else { dp[i][j] = dp[i - 1][j]; } } } return dp[N][W]; }
空间优化
在程序实现时可以对 0-1 背包做优化。观察状态转移方程可以知道,前 i 件物品的状态仅与前 i-1 件物品的状态有关,因此可以将 dp 定义为一维数组,其中 dp[j] 既可以表示 dp[i-1][j] 也可以表示 dp[i][j]。此时,
因为 dp[j-w] 表示 dp[i-1][j-w],因此不能先求 dp[i][j-w],防止将 dp[i-1][j-w] 覆盖。也就是说要先计算 dp[i][j] 再计算 dp[i][j-w],在程序实现时需要按倒序来循环求解。
public int knapsack(int W, int N, int[] weights, int[] values) { int[] dp = new int[W + 1]; for (int i = 1; i <= N; i++) { int w = weights[i - 1], v = values[i - 1]; for (int j = W; j >= 1; j--) { if (j >= w) { dp[j] = Math.max(dp[j], dp[j - w] + v); } } } return dp[W]; }
无法使用贪心算法的解释
0-1 背包问题无法使用贪心算法来求解,也就是说不能按照先添加性价比最高的物品来达到最优,这是因为这种方式可能造成背包空间的浪费,从而无法达到最优。考虑下面的物品和一个容量为 5 的背包,如果先添加物品 0 再添加物品 1,那么只能存放的价值为 16,浪费了大小为 2 的空间。最优的方式是存放物品 1 和物品 2,价值为 22.
id | w | v | v/w |
---|---|---|---|
0 | 1 | 6 | 6 |
1 | 2 | 10 | 5 |
2 | 3 | 12 | 4 |
变种
完全背包:物品数量为无限个
多重背包:物品数量有限制
多维费用背包:物品不仅有重量,还有体积,同时考虑这两种限制
其它:物品之间相互约束或者依赖
1. 划分数组为和相等的两部分
416. Partition Equal Subset Sum (Medium)
Input: [1, 5, 11, 5] Output: true Explanation: The array can be partitioned as [1, 5, 5] and [11].
可以看成一个背包大小为 sum/2 的 0-1 背包问题。
public boolean canPartition(int[] nums) { int sum = computeArraySum(nums); if (sum % 2 != 0) { return false; } int W = sum / 2; boolean[] dp = new boolean[W + 1]; dp[0] = true; for (int num : nums) { // 0-1 背包一个物品只能用一次 for (int i = W; i >= num; i--) { // 从后往前,先计算 dp[i] 再计算 dp[i-num] dp[i] = dp[i] || dp[i - num]; } } return dp[W]; } private int computeArraySum(int[] nums) { int sum = 0; for (int num : nums) { sum += num; } return sum; }
2. 改变一组数的正负号使得它们的和为一给定数
Input: nums is [1, 1, 1, 1, 1], S is 3. Output: 5 Explanation: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
该问题可以转换为 Subset Sum 问题,从而使用 0-1 背包的方法来求解。
可以将这组数看成两部分,P 和 N,其中 P 使用正号,N 使用负号,有以下推导:
sum(P) - sum(N) = target sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N) 2 * sum(P) = target + sum(nums)
因此只要找到一个子集,令它们都取正号,并且和等于 (target + sum(nums))/2,就证明存在解。
public int findTargetSumWays(int[] nums, int S) { int sum = computeArraySum(nums); if (sum < S || (sum + S) % 2 == 1) { return 0; } int W = (sum + S) / 2; int[] dp = new int[W + 1]; dp[0] = 1; for (int num : nums) { for (int i = W; i >= num; i--) { dp[i] = dp[i] + dp[i - num]; } } return dp[W]; } private int computeArraySum(int[] nums) { int sum = 0; for (int num : nums) { sum += num; } return sum; }
DFS 解法:
public int findTargetSumWays(int[] nums, int S) { return findTargetSumWays(nums, 0, S); } private int findTargetSumWays(int[] nums, int start, int S) { if (start == nums.length) { return S == 0 ? 1 : 0; } return findTargetSumWays(nums, start + 1, S + nums[start]) + findTargetSumWays(nums, start + 1, S - nums[start]); }
3. 01 字符构成最多的字符串
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3 Output: 4 Explanation: There are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are "10","0001","1","0"
这是一个多维费用的 0-1 背包问题,有两个背包大小,0 的数量和 1 的数量。
public int findMaxForm(String[] strs, int m, int n) { if (strs == null || strs.length == 0) { return 0; } int[][] dp = new int[m + 1][n + 1]; for (String s : strs) { // 每个字符串只能用一次 int ones = 0, zeros = 0; for (char c : s.toCharArray()) { if (c == '0') { zeros++; } else { ones++; } } for (int i = m; i >= zeros; i--) { for (int j = n; j >= ones; j--) { dp[i][j] = Math.max(dp[i][j], dp[i - zeros][j - ones] + 1); } } } return dp[m][n]; }
4. 找零钱的最少硬币数
Example 1: coins = [1, 2, 5], amount = 11 return 3 (11 = 5 + 5 + 1) Example 2: coins = [2], amount = 3 return -1.
题目描述:给一些面额的硬币,要求用这些硬币来组成给定面额的钱数,并且使得硬币数量最少。硬币可以重复使用。
- 物品:硬币
- 物品大小:面额
- 物品价值:数量
因为硬币可以重复使用,因此这是一个完全背包问题。完全背包只需要将 0-1 背包的逆序遍历 dp 数组改为正序遍历即可。
public int coinChange(int[] coins, int amount) { if (amount == 0 || coins == null || coins.length == 0) { return 0; } int[] dp = new int[amount + 1]; for (int coin : coins) { for (int i = coin; i <= amount; i++) { //将逆序遍历改为正序遍历 if (i == coin) { dp[i] = 1; } else if (dp[i] == 0 && dp[i - coin] != 0) { dp[i] = dp[i - coin] + 1; } else if (dp[i - coin] != 0) { dp[i] = Math.min(dp[i], dp[i - coin] + 1); } } } return dp[amount] == 0 ? -1 : dp[amount]; }
5. 找零钱的硬币数组合
Input: amount = 5, coins = [1, 2, 5] Output: 4 Explanation: there are four ways to make up the amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
完全背包问题,使用 dp 记录可达成目标的组合数目。
public int change(int amount, int[] coins) { if (amount == 0 || coins == null || coins.length == 0) { return 0; } int[] dp = new int[amount + 1]; dp[0] = 1; for (int coin : coins) { for (int i = coin; i <= amount; i++) { dp[i] += dp[i - coin]; } } return dp[amount]; }
6. 字符串按单词列表分割
s = "leetcode", dict = ["leet", "code"]. Return true because "leetcode" can be segmented as "leet code".
dict 中的单词没有使用次数的限制,因此这是一个完全背包问题。
该问题涉及到字典中单词的使用顺序,也就是说物品必须按一定顺序放入背包中,例如下面的 dict 就不够组成字符串 "leetcode":
["lee", "tc", "cod"]
求解顺序的完全背包问题时,对物品的迭代应该放在最里层,对背包的迭代放在外层,只有这样才能让物品按一定顺序放入背包中。
public boolean wordBreak(String s, List<String> wordDict) { int n = s.length(); boolean[] dp = new boolean[n + 1]; dp[0] = true; for (int i = 1; i <= n; i++) { for (String word : wordDict) { // 对物品的迭代应该放在最里层 int len = word.length(); if (len <= i && word.equals(s.substring(i - len, i))) { dp[i] = dp[i] || dp[i - len]; } } } return dp[n]; }
7. 组合总和
377. Combination Sum IV (Medium)
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
涉及顺序的完全背包。
public int combinationSum4(int[] nums, int target) { if (nums == null || nums.length == 0) { return 0; } int[] maximum = new int[target + 1]; maximum[0] = 1; Arrays.sort(nums); for (int i = 1; i <= target; i++) { for (int j = 0; j < nums.length && nums[j] <= i; j++) { maximum[i] += maximum[i - nums[j]]; } } return maximum[target]; }
股票交易
1. 需要冷却期的股票交易
309. Best Time to Buy and Sell Stock with Cooldown(Medium)
题目描述:交易之后需要有一天的冷却时间。
public int maxProfit(int[] prices) { if (prices == null || prices.length == 0) { return 0; } int N = prices.length; int[] buy = new int[N]; int[] s1 = new int[N]; int[] sell = new int[N]; int[] s2 = new int[N]; s1[0] = buy[0] = -prices[0]; sell[0] = s2[0] = 0; for (int i = 1; i < N; i++) { buy[i] = s2[i - 1] - prices[i]; s1[i] = Math.max(buy[i - 1], s1[i - 1]); sell[i] = Math.max(buy[i - 1], s1[i - 1]) + prices[i]; s2[i] = Math.max(s2[i - 1], sell[i - 1]); } return Math.max(sell[N - 1], s2[N - 1]); }
2. 需要交易费用的股票交易
714. Best Time to Buy and Sell Stock with Transaction Fee (Medium)
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2 Output: 8 Explanation: The maximum profit can be achieved by: Buying at prices[0] = 1 Selling at prices[3] = 8 Buying at prices[4] = 4 Selling at prices[5] = 9 The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
题目描述:每交易一次,都要支付一定的费用。
public int maxProfit(int[] prices, int fee) { int N = prices.length; int[] buy = new int[N]; int[] s1 = new int[N]; int[] sell = new int[N]; int[] s2 = new int[N]; s1[0] = buy[0] = -prices[0]; sell[0] = s2[0] = 0; for (int i = 1; i < N; i++) { buy[i] = Math.max(sell[i - 1], s2[i - 1]) - prices[i]; s1[i] = Math.max(buy[i - 1], s1[i - 1]); sell[i] = Math.max(buy[i - 1], s1[i - 1]) - fee + prices[i]; s2[i] = Math.max(s2[i - 1], sell[i - 1]); } return Math.max(sell[N - 1], s2[N - 1]); }
3. 只能进行两次的股票交易
123. Best Time to Buy and Sell Stock III (Hard)
public int maxProfit(int[] prices) { int firstBuy = Integer.MIN_VALUE, firstSell = 0; int secondBuy = Integer.MIN_VALUE, secondSell = 0; for (int curPrice : prices) { if (firstBuy < -curPrice) { firstBuy = -curPrice; } if (firstSell < firstBuy + curPrice) { firstSell = firstBuy + curPrice; } if (secondBuy < firstSell - curPrice) { secondBuy = firstSell - curPrice; } if (secondSell < secondBuy + curPrice) { secondSell = secondBuy + curPrice; } } return secondSell; }
4. 只能进行 k 次的股票交易
188. Best Time to Buy and Sell Stock IV (Hard)
public int maxProfit(int k, int[] prices) { int n = prices.length; if (k >= n / 2) { // 这种情况下该问题退化为普通的股票交易问题 int maxProfit = 0; for (int i = 1; i < n; i++) { if (prices[i] > prices[i - 1]) { maxProfit += prices[i] - prices[i - 1]; } } return maxProfit; } int[][] maxProfit = new int[k + 1][n]; for (int i = 1; i <= k; i++) { int localMax = maxProfit[i - 1][0] - prices[0]; for (int j = 1; j < n; j++) { maxProfit[i][j] = Math.max(maxProfit[i][j - 1], prices[j] + localMax); localMax = Math.max(localMax, maxProfit[i - 1][j] - prices[j]); } } return maxProfit[k][n - 1]; }
字符串编辑
1. 删除两个字符串的字符使它们相等
583. Delete Operation for Two Strings (Medium)
Input: "sea", "eat" Output: 2 Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".
可以转换为求两个字符串的最长公共子序列问题。
public int minDistance(String word1, String word2) { int m = word1.length(), n = word2.length(); int[][] dp = new int[m + 1][n + 1]; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]); } } } return m + n - 2 * dp[m][n]; }
2. 编辑距离
Example 1: Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e') Example 2: Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
题目描述:修改一个字符串成为另一个字符串,使得修改次数最少。一次修改操作包括:插入一个字符、删除一个字符、替换一个字符。
public int minDistance(String word1, String word2) { if (word1 == null || word2 == null) { return 0; } int m = word1.length(), n = word2.length(); int[][] dp = new int[m + 1][n + 1]; for (int i = 1; i <= m; i++) { dp[i][0] = i; } for (int i = 1; i <= n; i++) { dp[0][i] = i; } for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j])) + 1; } } } return dp[m][n]; }
3. 复制粘贴字符
题目描述:最开始只有一个字符 A,问需要多少次操作能够得到 n 个字符 A,每次操作可以复制当前所有的字符,或者粘贴。
Input: 3 Output: 3 Explanation: Intitally, we have one character 'A'. In step 1, we use Copy All operation. In step 2, we use Paste operation to get 'AA'. In step 3, we use Paste operation to get 'AAA'.
public int minSteps(int n) { if (n == 1) return 0; for (int i = 2; i <= Math.sqrt(n); i++) { if (n % i == 0) return i + minSteps(n / i); } return n; }
public int minSteps(int n) { int[] dp = new int[n + 1]; int h = (int) Math.sqrt(n); for (int i = 2; i <= n; i++) { dp[i] = i; for (int j = 2; j <= h; j++) { if (i % j == 0) { dp[i] = dp[j] + dp[i / j]; break; } } } return dp[n]; }