关于hdfs分片和分块

1.分块

从2.7.3版本开始,block size由64 MB变成了128 MB的。

在分布式的HDFS集群上,Hadoop系统保证一个块存储在一个datanode上。

HDFS的namenode只存储整个文件系统的元数据镜像,这个镜像由配置dfs.name.dir指定,datanode则存有文件的metainfo和具体的分块,存储路径由dfs.data.dir指定。

2.分片

由InputFormat这个接口来定义的,其中有个getSplits方法。这里有一个新的概念:fileSplit。每个map处理一个fileSplit,所以有多少个fileSplit就有多少个map(map数并不是单纯的由用户设置决定的)。

我们来看一下hadoop分配splits的源码:

//分片期望值大小 = 总的文件大小/分片数量
long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
//最小分片数量
long minSize = Math.max(job.getLong("mapred.min.split.size", 1), minSplitSize);
 
 //文件读取过程
for (FileStatus file: files) {
  Path path = file.getPath();
  FileSystem fs = path.getFileSystem(job);
  if ((length != 0) && isSplitable(fs, path)) { 
    long blockSize = file.getBlockSize();
    long splitSize = computeSplitSize(goalSize, minSize, blockSize);
    
    long bytesRemaining = length;
    while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
      String[] splitHosts = getSplitHosts(blkLocations,length-bytesRemaining, splitSize, clusterMap);
      splits.add(new FileSplit(path, length-bytesRemaining, splitSize, splitHosts));
      bytesRemaining -= splitSize;
    }
 
    if (bytesRemaining != 0) {
      splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts()));
    }
  } else if (length != 0) {
    String[] splitHosts = getSplitHosts(blkLocations,0,length,clusterMap);
    splits.add(new FileSplit(path, 0, length, splitHosts));
  } else { 
    //Create empty hosts array for zero length files
    splits.add(new FileSplit(path, 0, length, new String[0]));
  }
}
 
return splits.toArray(new FileSplit[splits.size()]);
 //分片核心函数
protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
	//分片大小的决定性公式:max(最小分片大小,min(期望分片大小,块的大小))
    return Math.max(minSize, Math.min(goalSize, blockSize));
}

totalSize:是整个Map-Reduce job所有输入的总大小。

numSplits:来自job.getNumMapTasks(),即在job启动时用org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)设置的值,给M-R框架的Map数量的提示。

goalSize:是输入总大小与提示Map task数量的比值,即期望每个Mapper处理多少的数据,仅仅是期望,具体处理的数据数由下面的computeSplitSize决定。

minSplitSize:默认为1,可由子类复写函数protected void setMinSplitSize(long minSplitSize) 重新设置。一般情况下,都为1,特殊情况除外。

minSize:取的1和mapred.min.split.size中较大的一个。

blockSize:HDFS的块大小,默认为64M,一般大的HDFS都设置成128M。

splitSize:就是最终每个Split的大小,那么Map的数量基本上就是totalSize/splitSize。

接下来看看computeSplitSize的逻辑:首先在goalSize(期望每个Mapper处理的数据量)和HDFS的block size中取较小的,然后与mapred.min.split.size相比取较大的。

3.hdfs小文件解决方案

对于小文件问题,Hadoop本身也提供了几个解决方案,分别为:Hadoop Archive,Sequence file和CombineFileInputFormat。

(1) Hadoop Archive

Hadoop Archive或者HAR,是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样在减少namenode内存使用的同时,仍然允许对文件进行透明的访问。

对某个目录/foo/bar下的所有小文件存档成/outputdir/ zoo.har:

hadoop archive -archiveName zoo.har -p /foo/bar /outputdir

当然,也可以指定HAR的大小(使用-Dhar.block.size)。

HAR是在Hadoop file system之上的一个文件系统,因此所有fs shell命令对HAR文件均可用,只不过是文件路径格式不一样,HAR的访问路径可以是以下两种格式:

har://scheme-hostname:port/archivepath/fileinarchive

har:///archivepath/fileinarchive(本节点)

可以这样查看HAR文件存档中的文件:

hadoop dfs -ls har:///user/zoo/foo.har

输出:

har:///user/zoo/foo.har/hadoop/dir1

har:///user/zoo/foo.har/hadoop/dir2

使用HAR时需要两点,第一,对小文件进行存档后,原文件并不会自动被删除,需要用户自己删除;第二,创建HAR文件的过程实际上是在运行一个mapreduce作业,因而需要有一个hadoop集群运行此命令。

此外,HAR还有一些缺陷:第一,一旦创建,Archives便不可改变。要增加或移除里面的文件,必须重新创建归档文件。第二,要归档的文件名中不能有空格,否则会抛出异常,可以将空格用其他符号替换(使用-Dhar.space.replacement.enable=true 和-Dhar.space.replacement参数)。

(2) Sequence file

sequence file由一系列的二进制key/value组成,如果为key小文件名,value为文件内容,则可以将大批小文件合并成一个大文件。

Hadoop-0.21.0中提供了SequenceFile,包括Writer,Reader和SequenceFileSorter类进行写,读和排序操作。如果hadoop版本低于0.21.0的版本,实现方法可参见(3)。

(3)CombineFileInputFormat

CombineFileInputFormat是一种新的inputformat,用于将多个文件合并成一个单独的split,另外,它会考虑数据的存储位置。

分享我之前的一个笔记:
问题:默认情况下,TextInputFormat对任务的切片是按照文件规划切片的,一个map对应一个切片,当小文件很多时,会产生很多maptask,处理效率很低。
解决:最好的办法:使用数据处理的最前端,将小文件先合并成大文件,再上传到HDFS后续分析。
补救策略:如果小文件已经在HDFS中了,可以使用另一个InpuFormat来切片(CombinerInputFormat),他的切片逻辑和FileInputFormat不同,它可以将多个小文件规划到同一个切片中,这样将小文件交给maptask。

setMaxInputSplitSize()//设置文件的最大可以是4M
setMinInputSplitSize()//设置文件的最小可以是2M
故很多的小文件交给mptask时大小为2M-4M之间

参考博客:
https://blog.csdn.net/xueyao0201/article/details/80591904
https://blog.csdn.net/lisongjia123/article/details/78837009
https://blog.csdn.net/ZG_24/article/details/80635056
https://blog.csdn.net/huangjin0507/article/details/51798629

全部评论

相关推荐

不愿透露姓名的神秘牛友
11-27 10:28
点赞 评论 收藏
分享
11-05 07:29
贵州大学 Java
点赞 评论 收藏
分享
10-09 00:50
已编辑
长江大学 算法工程师
不期而遇的夏天:1.同学你面试评价不错,概率很大,请耐心等待;2.你的排名比较靠前,不要担心,耐心等待;3.问题不大,正在审批,不要着急签其他公司,等等我们!4.预计9月中下旬,安心过节;5.下周会有结果,请耐心等待下;6.可能国庆节前后,一有结果我马上通知你;7.预计10月中旬,再坚持一下;8.正在走流程,就这两天了;9.同学,结果我也不知道,你如果查到了也告诉我一声;10.同学你出线不明朗,建议签其他公司保底!11.同学你找了哪些公司,我也在找工作。
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务