java集合源码解读:List集合(ArrayList、Vector、CopyOnWriteArrayList、LinkedList、Stack)
1.ArrayList
package java.util;
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
// 序列版本号
private static final long serialVersionUID = 8683452581122892189L;
// 保存ArrayList中数据的数组
private transient Object[] elementData;
// ArrayList中实际数据的数量
private int size;
// ArrayList带容量大小的构造函数。
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
// 新建一个数组
this.elementData = new Object[initialCapacity];
}
// ArrayList构造函数。默认容量是10。
public ArrayList() {
this(10);
}
// 创建一个包含collection的ArrayList
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
// 将当前容量值设为 =实际元素个数
public void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (size < oldCapacity) {
elementData = Arrays.copyOf(elementData, size);
}
}
// 确定ArrarList的容量。
// 若ArrayList的容量不足以容纳当前的全部元素,设置 新的容量=“(原始容量x3)/2 + 1”
public void ensureCapacity(int minCapacity) {
// 将“修改统计数”+1
modCount++;
int oldCapacity = elementData.length;
// 若当前容量不足以容纳当前的元素个数,设置 新的容量=“(原始容量x3)/2 + 1”
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
// 添加元素e
public boolean add(E e) {
// 确定ArrayList的容量大小
ensureCapacity(size + 1); // Increments modCount!!
// 添加e到ArrayList中
elementData[size++] = e;
return true;
}
// 返回ArrayList的实际大小
public int size() {
return size;
}
// 返回ArrayList是否包含Object(o)
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
// 返回ArrayList是否为空
public boolean isEmpty() {
return size == 0;
}
// 正向查找,返回元素的索引值
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 反向查找,返回元素的索引值
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 反向查找(从数组末尾向开始查找),返回元素(o)的索引值
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
// 返回ArrayList的Object数组
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
// 返回ArrayList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public <T> T[] toArray(T[] a) {
// 若数组a的大小 < ArrayList的元素个数;
// 则新建一个T[]数组,数组大小是“ArrayList的元素个数”,并将“ArrayList”全部拷贝到新数组中
if (a.length < size)
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
// 若数组a的大小 >= ArrayList的元素个数;
// 则将ArrayList的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
// 获取index位置的元素值
public E get(int index) {
RangeCheck(index);
return (E) elementData[index];
}
// 设置index位置的值为element
public E set(int index, E element) {
RangeCheck(index);
E oldValue = (E) elementData[index];
elementData[index] = element;
return oldValue;
}
// 将e添加到ArrayList中
public boolean add(E e) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
// 将e添加到ArrayList的指定位置
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
ensureCapacity(size+1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
// 删除ArrayList指定位置的元素
public E remove(int index) {
RangeCheck(index);
modCount++;
E oldValue = (E) elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
// 删除ArrayList的指定元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
// 快速删除第index个元素
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
// 从"index+1"开始,用后面的元素替换前面的元素。
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// 将最后一个元素设为null
elementData[--size] = null; // Let gc do its work
}
// 删除元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
// 便利ArrayList,找到“元素o”,则删除,并返回true。
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
// 清空ArrayList,将全部的元素设为null
public void clear() {
modCount++;
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
// 将集合c追加到ArrayList中
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
// 从index位置开始,将集合c添加到ArrayList
public boolean addAll(int index, Collection<? extends E> c) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: " + index + ", Size: " + size);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
// 删除fromIndex到toIndex之间的全部元素。
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newSize = size - (toIndex-fromIndex);
while (size != newSize)
elementData[--size] = null;
}
private void RangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
}
// 克隆函数
public Object clone() {
try {
ArrayList<E> v = (ArrayList<E>) super.clone();
// 将当前ArrayList的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
// java.io.Serializable的写入函数
// 将ArrayList的“容量,所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// 写入“数组的容量”
s.writeInt(elementData.length);
// 写入“数组的每一个元素”
for (int i=0; i<size; i++)
s.writeObject(elementData[i]);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
// java.io.Serializable的读取函数:根据写入方式读出
// 先将ArrayList的“容量”读出,然后将“所有的元素值”读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject();
// 从输入流中读取ArrayList的“容量”
int arrayLength = s.readInt();
Object[] a = elementData = new Object[arrayLength];
// 从输入流中将“所有的元素值”读出
for (int i=0; i<size; i++)
a[i] = s.readObject();
}
}
(1) 底层数组
private transient Object[] elementData;//elementData是真正的保存数据的数组
transient,意为短暂的,瞬时的。
java 的transient关键字为我们提供了便利,你只需要实现Serilizable接口,将不需要序列化的属性前添加关键字transient,序列化对象的时候,这个属性就不会序列化到指定的目的地中。只会在调用者的内存中使用,不会写入到磁盘中。
如果一个用户有一些敏感信息(如密码,银行卡号等),为了安全起见,不希望在网络操作(主要涉及到序列化操作,本地序列化缓存也适用)中被传输,这些信息对应的变量就可以加上transient关键字。
(2)三种构造函数
ArrayList():默认构造函数,提供初始容量为 10 的空列表。
ArrayList(int initialCapacity):构造一个具有指定初始容量的空列表。
ArrayList(Collection<? extends E> c):构造一个包含指定 collection 的元素的列表,这些元素是按照该 collection 的迭代器返回它们的顺序排列的。
/** * 构造一个初始容量为 10 的空列表 */
public ArrayList() {
this(10);
}
/** * 构造一个具有指定初始容量的空列表。 */
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "
+ initialCapacity);
this.elementData = new Object [initialCapacity];
}
/** * 构造一个包含指定 collection 的元素的列表,这些元素是按照该 collection 的迭代器返回它们的顺序排列的。 */
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
(3)新增数据
ArrayList 提供了 add(E e)、add(int index, E element)、addAll(Collection<? extends E> c)、addAll(int index, Collection<? extends E> c)、set(int index, E element) 这个五个方法来实现 ArrayList 增加。
add(E e):将指定的元素添加到此列表的尾部。
public boolean add(E e) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
这里 ensureCapacity() 方法是对 ArrayList 集合进行扩容操作,elementData(size++) = e,将列表末尾元素指向e。
add(int index, E element):将指定的元素插入此列表中的指定位置。
public void add(int index, E element) {
//判断索引位置是否正确
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
//扩容检测
ensureCapacity(size+1);
/* * 对源数组进行复制处理(位移),从index + 1到size-index。 * 主要目的就是空出index位置供数据插入, * 即向右移动当前位于该位置的元素以及所有后续元素。 */
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
//在指定位置赋值
elementData[index] = element;
size++;
}
在这个方法中最根本的方法就是 System.arraycopy() 方法,该方法的根本目的就是将 index 位置空出来以供新数据插入,这里需要进行数组数据的右移,这是非常麻烦和耗时的,所以如果指定的数据集合需要进行大量插入(中间插入)操作,推荐使用 LinkedList。
其他的新增方法也类似,都是先检测扩容,然后数组的复制,最后size++
(4)删除
ArrayList 提供了 remove(int index)、remove(Object o)、removeRange(int fromIndex, int toIndex)、removeAll() 四个方法进行元素的删除。
remove(int index):移除此列表中指定位置上的元素。
public E remove(int index) {
//位置验证
RangeCheck(index);
modCount++;
//需要删除的元素
E oldValue = (E) elementData[index];
//向左移的位数
int numMoved = size - index - 1;
//若需要移动,则想左移动numMoved位
if (numMoved > 0)
System.arraycopy(elementData, index + 1, elementData, index,
numMoved);
//置空最后一个元素
elementData[--size] = null; // Let gc do its work
return oldValue;
}
(5)查找
public E get(int index) {
RangeCheck(index);
return (E) elementData[index];
}
(6)扩容
public void ensureCapacity(int minCapacity) {
//修改计时器
modCount++;
//ArrayList容量大小
int oldCapacity = elementData.length;
/* * 若当前需要的长度大于当前数组的长度时,进行扩容操 作 */
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
//计算新的容量大小,为当前容量的1.5倍
int newCapacity = (oldCapacity * 3) / 2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
//数组拷贝,生成新的数组
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
扩容计算:(oldCapacity * 3) / 2 + 1;
2.Vector
(1)储存结构
protected Object[] elementData;
protected int elementCount;
protected int capacityIncrement;
(2)vector的构造函数
/** * 构造一个空向量,使其内部数据数组的大小为 10,其标准容量增量为零。 */
public Vector() {
this(10);
}
/** * 构造一个包含指定 collection 中的元素的向量,这些元素按其 collection 的迭代器返回元素的顺序排列。 */
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount,
Object[].class);
}
/** * 使用指定的初始容量和等于零的容量增量构造一个空向量。 */
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
/** * 使用指定的初始容量和容量增量构造一个空的向量。 */
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object [initialCapacity];
this.capacityIncrement = capacityIncrement;
}
elementData :”Object[] 类型的数组”,它保存了 Vector 中的元素。按照 Vector 的设计 elementData 为一个动态数组,可以随着元素的增加而动态的增长,其具体的增加方式后面提到(ensureCapacity 方法)。如果在初始化 Vector 时没有指定容器大小,则使用默认大小为 10.
elementCount:Vector 对象中的有效组件数。
capacityIncrement:向量的大小大于其容量时,容量自动增加的量。如果在创建 Vector 时,指定了 capacityIncrement 的大小;则,每次当 Vector 中动态数组容量增加时>,增加的大小都是 capacityIncrement。如果容量的增量小于等于零,则每次需要增大容量时,向量的容量将增大一倍。
(3)新增
add(E e):将指定元素添加到此向量的末尾。
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1); //确认容器大小,如果操作容量则扩容操作
elementData[elementCount++] = e; //将e元素添加至末尾
return true;
}
这个方法相对而言比较简单,具体过程就是先确认容器的大小,看是否需要进行扩容操作,然后将E元素添加到此向量的末尾。
private void ensureCapacityHelper(int minCapacity) {
//如果
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/** * 进行扩容操作 * 如果此向量的当前容量小于minCapacity,则通过将其内部数组替换为一个较大的数组增加其容量。 * 新数据数组的大小=原来的大小 + capacityIncrement, * 除非 capacityIncrement 的值小于等于零,在后一种情况下,新的容量将为原来容量的两倍,不过,如果此大小仍然小于 minCapacity,则新容量将为 minCapacity。 */
private void grow(int minCapacity) {
int oldCapacity = elementData.length; //当前容器大小
/* * 新容器大小 * 若容量增量系数(capacityIncrement) > 0,则将容器大小增加到capacityIncrement * 否则将容量增加一倍 */
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
/** * 判断是否超出最大范围 * MAX_ARRAY_SIZE:private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; */
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0)
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;
}
对于 Vector 整个的扩容过程,就是根据 capacityIncrement 确认扩容大小的,若 capacityIncrement <= 0 则扩大一倍,否则扩大至 capacityIncrement 。当然这个容量的最大范围为 Integer.MAX_VALUE即,2^32 – 1,所以 Vector 并不是可以无限扩充的。
(4)删除
/** * 从Vector容器中移除指定元素E */
public boolean remove(Object o) {
return removeElement(o);
}
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj); //计算obj在Vector容器中位置
if (i >= 0) {
removeElementAt(i); //移除
return true;
}
return false;
}
public synchronized void removeElementAt(int index) {
modCount++; //修改次数+1
if (index >= elementCount) { //删除位置大于容器有效大小
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
else if (index < 0) { //位置小于 < 0
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
//从指定源数组中复制一个数组,复制从指定的位置开始,到目标数组的指定位置结束。
//也就是数组元素从j位置往前移
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--; //容器中有效组件个数 - 1
elementData[elementCount] = null; //将向量的末尾位置设置为null
}
3.CopyOnWriteArraryList
(1)存储结构
private volatile transient Object[] array;
//array的get和set方法
final Object[] getArray() {
return array;
}
final void setArray(Object[] a) {
array = a;
}
(2)构造函数
public CopyOnWriteArrayList() {
setArray(new Object[0]);
}
public CopyOnWriteArrayList(Collection<? extends E> c) {
Object[] elements = c.toArray();
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elements.getClass() != Object[].class)
elements = Arrays.copyOf(elements, elements.length, Object[].class);
setArray(elements);
}
// Creates a list holding a copy of the given array.
public CopyOnWriteArrayList(E[] toCopyIn) {
setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));
}
使用一个指向volatile类型的Object数组来保存容器元素。构造函数中都会根据参数值重新生成一个新的数组。
(3)新增
public boolean add(E e) {
final ReentrantLock lock = this.lock; // 获取独占锁
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);// 重新生成一个新的数组实例,并将原始数组的元素拷贝到新数组中
newElements[len] = e; // 添加新的元素到新数组的末尾
setArray(newElements); // 更新底层数组
return true;
} finally {
lock.unlock();
}
}
第一,在”添加操作“开始前,获取独占锁(lock),若此时有需要线程要获取锁,则必须等待;在操作完毕后,释放独占锁(lock),此时其它线程才能获取锁。通过独占锁,来防止多线程同时修改数据!
第二,操作完毕时,会通过setArray()来更新volatile数组。对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入;这样,每次添加元素之后,其它线程都能看到新添加的元素。(volatile详情请见: java之volatile)
(4)删除
public E remove(int index) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
E oldValue = get(elements, index); // 获取volatile数组中指定索引处的元素值
int numMoved = len - index - 1;
if (numMoved == 0) // 如果被删除的是最后一个元素,则直接通过Arrays.copyOf()进行处理,而不需要新建数组
setArray(Arrays.copyOf(elements, len - 1));
else {
Object[] newElements = new Object[len - 1];
System.arraycopy(elements, 0, newElements, 0, index); // 拷贝删除元素前半部分数据到新数组中
System.arraycopy(elements, index + 1, newElements, index, numMoved);// 拷贝删除元素后半部分数据到新数组中
setArray(newElements); // 更新volatile数组
}
return oldValue;
} finally {
lock.unlock();
}
}
总结:使用volatile(可见性和防止重排)+lock(CAS)来保证并发正常进行
4.LinkedList
linkedList是一个线程不安全的双向链表
(1)定义
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
Deque 一个线性 collection,支持在两端插入和移除元素,定义了双端队列的操作。
(2)属性
private transient Entry<E> header = new Entry<E>(null, null, null);//表头
private transient int size = 0;//长度
private static class Entry<E> {
E element; //元素节点
Entry<E> next; //下一个元素
Entry<E> previous; //上一个元素
Entry(E element, Entry<E> next, Entry<E> previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
}
Entry 为 LinkedList 的内部类,它定义了存储的元素。该元素的前一个元素、后一个元素,这是典型的双向链表定义方式。
(3)构造函数
/** * 构造一个空列表。 */
public LinkedList() {
header.next = header.previous = header;
}
/** * 构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列。 */
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
LinkedList() 构造一个空列表。里面没有任何元素,仅仅只是将 header 节点的前一个元素、后一个元素都指向自身。
LinkedList(Collection<? extends E> c): 构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列。该构造函数首先会调用 LinkedList(),构造一个空列表,然后调用了 addAll() 方法将 Collection 中的所有元素添加到列表中。
(4)新增
add(E e): 将指定元素添加到此列表的结尾。
public boolean add(E e) {
addBefore(e, header);
return true;
}
private Entry<E> addBefore(E e, Entry<E> entry) {
//利用Entry构造函数构建一个新节点 newEntry,
Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
//修改newEntry的前后节点的引用,确保其链表的引用关系是正确的
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;
//容量+1
size++;
//修改次数+1
modCount++;
return newEntry;
}
(5)移除
public boolean remove(Object o) {
if (o==null) {
for (Entry<E> e = header.next; e != header; e = e.next) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
for (Entry<E> e = header.next; e != header; e = e.next) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
remove(Object o):从此列表中移除首次出现的指定元素(如果存在)。
private E remove(Entry<E> e) {
if (e == header)
throw new NoSuchElementException();
//保留被移除的元素:要返回
E result = e.element;
//将该节点的前一节点的next指向该节点后节点
e.previous.next = e.next;
//将该节点的后一节点的previous指向该节点的前节点
//这两步就可以将该节点从链表从除去:在该链表中是无法遍历到该节点的
e.next.previous = e.previous;
//将该节点归空
e.next = e.previous = null;
e.element = null;
size--;
modCount++;
return result;
}
remove方法其实就是双向链表的删除节点操作。
5.Stack
(1)定义
Stack 继承 Vector,他对 Vector 进行了简单的扩展:
public class Stack<E> extends Vector<E>
(2)方法
操作 | 说明 |
---|---|
empty() | 测试堆栈是否为空。 |
peek() | 查看堆栈顶部的对象,但不从堆栈中移除它。 |
pop() | 移除堆栈顶部的对象,并作为此函数的值返回该对象。 |
push(E item) | 把项压入堆栈顶部。 |
search(Object o) | 返回对象在堆栈中的位置,以 1 为基数。 |
(3)源码
/** * 构造函数 */
public Stack() {
}
/** * push函数:将元素存入栈顶 */
public E push(E item) {
// 将元素存入栈顶。
// addElement()的实现在Vector.java中
addElement(item);
return item;
}
/** * pop函数:返回栈顶元素,并将其从栈中删除 */
public synchronized E pop() {
E obj;
int len = size();
obj = peek();
// 删除栈顶元素,removeElementAt()的实现在Vector.java中
removeElementAt(len - 1);
return obj;
}
/** * peek函数:返回栈顶元素,不执行删除操作 */
public synchronized E peek() {
int len = size();
if (len == 0)
throw new EmptyStackException();
// 返回栈顶元素,elementAt()具体实现在Vector.java中
return elementAt(len - 1);
}
/** * 栈是否为空 */
public boolean empty() {
return size() == 0;
}
/** * 查找“元素o”在栈中的位置:由栈底向栈顶方向数 */
public synchronized int search(Object o) {
// 获取元素索引,elementAt()具体实现在Vector.java中
int i = lastIndexOf(o);
if (i >= 0) {
return size() - i;
}
return -1;
}