Charm Bracelet
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
C++版本一
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
int n,m;
struct node{
int d,w;
}b[4000];
bool cmp(node a,node b){
if(a.w==b.w)
return a.d>a.d;
return a.w>b.w;
}
int dp[13005];
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++){
scanf("%d%d",&b[i].w,&b[i].d);
}
memset(dp,0,sizeof(dp));
sort(b,b+n,cmp);
for(int i=0;i<n;i++){
//dp[i]=b[i].d;
for(int j=m;j>=b[i].w;j--){
dp[j]=max(dp[j],dp[j-b[i].w]+b[i].d);
}
}
cout << dp[m] << endl;
//cout << "Hello world!" << endl;
return 0;
}
C++版本二
///2014.4.10
///poj3624
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int N,M;
int w[3500],c[3500];
int f[13500];
int main()
{
// freopen("in","r",stdin);
// freopen("out","w",stdout);
cin>>N>>M;
for(int i=1 ; i<=N ; i++){
cin>>c[i]>>w[i];
}
memset(f,0,sizeof(f) );
for(int i=1 ; i<=N ; i++){
for(int j=M ; j>=1 ; j--){
int a;
if( j-c[i]>=0 )
a = f[j-c[i]]+w[i];
else
a = 0;
f[j] = f[j]>a? f[j]:a;
}
}
cout<<f[M]<<endl;
return 0;
}
C++版本三
#include <iostream>
using namespace std;
const int MAX_N = 3405;
const int MAX_M = 12885;
int dp[MAX_M];
int w[MAX_N];
int d[MAX_N];
int max(int a, int b) {
return a > b ? a : b;
}
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
cin >> w >> d;
}
for(int i = 1; i <= n; i++) {
for(int j = m; j >= w; j--) {
dp[j] = max(dp[j-w] + d, dp[j]);
}
}
cout << dp[m] << endl;
return 0;
}