Going Home

http://acm.hdu.edu.cn/showproblem.php?pid=1533

http://poj.org/problem?id=2195

C++版本一

题解:最小费用最大流

/*
*@Author:   STZG
*@Language: C++
*/
#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=200+10;
const int M=100+10;
const int MOD=1e9+7;
const double PI = acos(-1.0);
const double EXP = 1E-8;
const int INF = 0x3f3f3f3f;
int s,t,n,m,k,p,l,r,u,v;
int ans,cnth,cntm,flag,temp,sum,minz,maxflow;
int dis[N];
bool vis[N];
char str[N][N];
struct Node{
    int x,y;
    Node(){};
    Node(int X,int Y):x(X),y(Y){}
}home[N],man[N];
struct node{
    int u,v,c,w;
    node(){};
    node(int form,int to,int cap,int w):u(form),v(to),c(cap),w(w){}
};
vector<node>edge;
vector<int> G[N];
void Addedge(int u,int v,int cap,int w){
    edge.push_back({u,v,cap,w});
    edge.push_back({v,u,0,-w});
    int sz=edge.size();
    G[u].push_back(sz-2);
    G[v].push_back(sz-1);
}
bool bfs(int u){
    //memset(dis,-1,sizeof(dis));
    for(int i=0;i<=t;i++)dis[i]=INF,vis[i]=0;
    dis[u]=0;
    queue<int>q;
    q.push(u);
    vis[u]=1;
    while(!q.empty()){
        int u=q.front();
        q.pop();
        vis[u]=0;
        for(int i=0;i<G[u].size();i++){
            node e=edge[G[u][i]];//cout<<u<<" "<<e.v<<endl;
            if(dis[e.v]>dis[u]+e.w&&e.c>0){
                dis[e.v]=dis[u]+e.w;
                if(!vis[e.v]){
                    vis[e.v]=1;
                    q.push(e.v);
                }
            }
        }
    }
    return dis[t]!=INF;
}
int dfs(int u,int flow){
    vis[u]=1;
    if(u==t)
        return flow;
    int now;
    for(int i=0;i<G[u].size();i++){
        node e=edge[G[u][i]];//cout<<ans<<endl;
        if((!vis[e.v]||e.v==t)&&e.c>0&&dis[u]+e.w==dis[e.v]&&(now=dfs(e.v,min(flow,e.c)))){
            ans+=e.w*now;
            //cout<<now<<endl;
            edge[G[u][i]].c-=now;
            edge[G[u][i]^1].c+=now;
            return now;
        }
    }
    return 0;
}
void dinic(){
    while(bfs(s)){
        int res=0;
        //memset(vis,0,sizeof(vis));
        while((res=dfs(s,INF))){
            maxflow+=res;
            memset(vis,0,sizeof(vis));
        }
    }
}
void init(){
    for(int i=0;i<=t;i++)G[i].clear();
    edge.clear();
    ans=0;
    maxflow=0;
}
int main()
{
#ifdef DEBUG
	freopen("input.in", "r", stdin);
	//freopen("output.out", "w", stdout);
#endif
    //ios::sync_with_stdio(false);
    //cin.tie(0);
    //cout.tie(0);
    //scanf("%d",&t);
    while(~scanf("%d%d",&n,&m)&&n+m){
        cnth=cntm=0;
        for(int i=1;i<=n;i++){
            scanf("%s",str[i]+1);
            for(int j=1;j<=m;j++){
                if(str[i][j]=='H')home[++cnth]=Node(i,j);
                if(str[i][j]=='m')man[++cntm]=Node(i,j);
            }
        }
        s=0;
        t=cnth+cntm+1;
        init();
        for(int i = 1; i <= cnth; i++){//建图
           for(int j = 1; j <= cntm; j++){
                int dist= abs(home[i].x - man[j].x) + abs(home[i].y - man[j].y);
                Addedge(i,j+cnth,1,dist);
                //Addedge(j+cnth,i,0,-dist);
            }
        }
        for(int i=1;i<=cnth;i++){
            Addedge(s,i,1,0);
            //Addedge(i,s,0,0);
        }
        for(int i=cnth+1;i<t;i++){
            //Addedge(t,i,0,0);
            Addedge(i,t,1,0);
        }
        //cout<<s<<" "<<t<<endl;
        dinic();
        cout<<ans<<endl;
    }

#ifdef DEBUG
	printf("Time cost : %lf s\n",(double)clock()/CLOCKS_PER_SEC);
#endif
    //cout << "Hello world!" << endl;
    return 0;
}

C++版本二

题解:带权二分图的最优匹配

每个man和house建立带权二分图,曼哈顿距离就是边的值,这里要求最小费用,也就是二分图最小权值匹配,但是KM算法求的是二分图最大权值匹配,所以此处用边的负数求最优匹配,求出来的答案的负数就是最小权匹配。

注意:题目说house最多100,但是没有说明man的范围,所以man应该最多100*100。

应该用house为二分图的X部,因为算法复杂度和X部点数有关,所以用点数少的house为X部

因为存的是负数,在预处理X部的顶标值初始化应该是-INF,不能是0

参考文章:KM算法 

/*
*@Author:   STZG
*@Language: C++
*/
#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<deque>
#include<stack>
#include<cmath>
#include<list>
#include<map>
#include<set>
//#define DEBUG
#define RI register int
#define endl "\n"
using namespace std;
typedef long long ll;
//typedef __int128 lll;
const int N=100+10;
const int M=100+10;
const int MOD=1e9+7;
const double PI = acos(-1.0);
const double EXP = 1E-8;
const int INF = 0x3f3f3f3f;
int t,n,m,k,p,l,r,u,v;
int ans,cnth,cntm,flag,temp,sum,minz;
int Map[N][N],cx[N],cy[N],wx[N],wy[N];
bool visx[N],visy[N];
char str[N][N];
struct node{
    int x,y;
    node(){};
    node(int X,int Y):x(X),y(Y){}
}home[M],man[M];
void init(){
    cnth=0;cntm=0;
    ans=0;
}
bool dfs(int u){
    visx[u]=1;
    for(int v=1;v<=cntm;v++){
        if(!visy[v]){
            int t=wx[u]+wy[v]-Map[u][v];
            if(t==0){
                visy[v]=1;
                if(cy[v]==-1||dfs(cy[v])){
                    cx[u]=v;
                    cy[v]=u;
                    return 1;
                }
            }else if(t>0)minz=min(minz,t);
        }
    }
    return 0;
}
int KM(){
    memset(cx,-1,sizeof(cx));
    memset(cy,-1,sizeof(cy));
    memset(wx,-INF,sizeof(wx));
    memset(wy,0,sizeof(wy));
    for(int i = 1; i <= cnth; i++){//建图
       for(int j = 1; j <= cntm; j++){
            wx[i]=max(wx[i],Map[i][j]);
        }
    }
    for(int i=1;i<=cnth;i++){
        while(1){
            minz=INF;
            memset(visx, 0, sizeof(visx));
            memset(visy, 0, sizeof(visy));
            if(dfs(i))break;
            for(int j = 1; j <= cnth; j++)
                if(visx[j])wx[j] -= minz;
            for(int j = 1; j <= cntm; j++)
                if(visy[j])wy[j] += minz;
        }
    }
    int res=0;
    for(int i=1;i<=cnth;i++)
        if(cx[i]!=-1)res+=Map[i][cx[i]];
    return res;
}
int main()
{
#ifdef DEBUG
	freopen("input.in", "r", stdin);
	//freopen("output.out", "w", stdout);
#endif
    //ios::sync_with_stdio(false);
    //cin.tie(0);
    //cout.tie(0);
    //scanf("%d",&t);
    while(~scanf("%d%d",&n,&m)&&n+m){
        init();
        for(int i=1;i<=n;i++){
            scanf("%s",str[i]+1);
            for(int j=1;j<=m;j++){
                if(str[i][j]=='H')home[++cnth]=node(i,j);
                if(str[i][j]=='m')man[++cntm]=node(i,j);
            }
        }
        for(int i = 1; i <= cnth; i++){//建图
           for(int j = 1; j <= cntm; j++){
                Map[i][j] = -abs(home[i].x - man[j].x) - abs(home[i].y - man[j].y);
            }
        }
        cout<<(-KM())<<endl;
    }

#ifdef DEBUG
	printf("Time cost : %lf s\n",(double)clock()/CLOCKS_PER_SEC);
#endif
    //cout << "Hello world!" << endl;
    return 0;
}

C++版本三

题解:最小费用最大流

#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define INF 0x3f3f3f3f
#define FI first
#define SE second
#define MP make_pair
#define PI pair<int,int>
#define lson l,m,rt<<1,ls,rs
#define rson m+1,r,rt<<1|1,ls,rs
#define test printf("here!!!\n")
using namespace std;
const int mx=100+10;//最大流的情况下使他最小费用
int n,m;
char s[mx];
int st_p,to_p;
struct EG
{
    int to;
    int c;
    int w;
    int nxt;
}edge[mx*mx*2];
int head[mx*2];
int cnt=1;
int dis[mx*2];
int vis[mx*2];
struct Nd
{
    int x,y;
}hs[mx],ms[mx];
int tot,tot2;
int ans;
//int maxflow;
void add(int st,int to,int c,int w)
{
    edge[++cnt].to=to;
    edge[cnt].c=c;
    edge[cnt].w=w;
    edge[cnt].nxt=head[st];
    head[st]=cnt;
}
int Dinic_SPFA()
{
    for (int i=0;i<=tot+tot2+1;++i) dis[i]=INF,vis[i]=0;
    queue<int>q;
    q.push(st_p);
    vis[st_p]=1;
    dis[st_p]=0;
    while (!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0;
        for (int i=head[u];i;i=edge[i].nxt)
        {
            int v=edge[i].to;
            if (dis[v]>dis[u]+edge[i].w&&edge[i].c)
            {
                dis[v]=dis[u]+edge[i].w;
                if (!vis[v])
                {
                    q.push(v);
                    vis[v]=1;
                }
            }
        }
    }
    return dis[to_p]!=INF;
}//判断有无增广路,并构造最短边权的增广路,同BFS
int Dinic_dfs(int u,int flow)
{
    vis[u]=1;
    if (u==to_p)
    {
        //maxflow+=flow;
        return flow;
    }
    int used=0;
    for (int i=head[u];i;i=edge[i].nxt)
    {
        int v=edge[i].to;
        if ((!vis[v]||v==to_p)&&dis[v]==dis[u]+edge[i].w&&edge[i].c)//防止0边权导致的环
        {
            int rflow=Dinic_dfs(v,min(flow-used,edge[i].c));
            if (rflow)
            {
                used+=rflow;
                ans+=edge[i].w*rflow;
                edge[i].c-=rflow;
                edge[i^1].c+=rflow;
                if (flow==used) break;
            }
        }
    }
    return used;
}
int Dinic()
{
    while (Dinic_SPFA())
    {
        vis[to_p]=1;
        while (vis[to_p])
        {
            memset(vis,0,sizeof(vis));
            Dinic_dfs(st_p,INT_MAX);
        }
    }
}
int main()
{
    while (~scanf("%d%d",&n,&m)&&n+m)
    {
        memset(head,0,sizeof(head));
        cnt=1;
        tot=tot2=0;
        ans=0;
        //maxflow=0;
        for (int i=1;i<=n;++i)
        {
            scanf("%s",s);
            for (int j=0;j<m;++j)
            {
                if (s[j]=='m') ms[++tot].x=i,ms[tot].y=j;
                else if (s[j]=='H') hs[++tot2].x=i,hs[tot2].y=j;
            }
        }
        for (int i=1;i<=tot;++i)
        {
            for (int j=1;j<=tot2;++j)
            {
                int disct=abs(ms[i].x-hs[j].x)+abs(ms[i].y-hs[j].y);
                add(i,tot+j,1,disct);
                add(tot+j,i,0,-disct);
            }
        }
        st_p=0;
        to_p=tot+tot2+1;
        for (int i=1;i<=tot;++i)
        {
            add(st_p,i,1,0);
            add(i,st_p,0,0);
        }
        for (int i=tot+1;i<to_p;++i)
        {
            add(i,to_p,1,0);
            add(to_p,i,0,0);
        }
        Dinic();
        printf("%d\n",ans);
    }
}

 

全部评论

相关推荐

宇智波爱学习:我还没收到笔试
投递荣耀等公司10个岗位
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务