DP分析
- 设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)
- 初状态是F[i,0]=A[i]
- 状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])
void RMQ(int num) //预处理->O(nlogn)
{
for(int j = 1; j < 20; ++j) // 这里j的范围根据具体题目数据定义
for(int i = 1; i <= num; ++i) // num为数组内整数的个数
if(i + (1 << j) - 1 <= num)
{
maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]);
minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]);
}
}
#define _CRT_SECURE_NO_WARNINGS
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<algorithm>
#include<iostream>
#include<string>
#include<cstring>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
int maxnum[50010][20];
int minnum[50010][20];
int main()
{
int num, n, q, i, j, x, y;
while (~scanf("%d%d", &n, &q))
{
for (i = 1; i <= n; i++)
{
scanf("%d", &num);
maxnum[i][0] = minnum[i][0] = num;
}
//DP转态转移,如下
for (j = 1; (1 << j) <= n; j++)
for (i = 1; i + (1 << j) - 1 <= n; i++) // 预处理
{
maxnum[i][j] = max(maxnum[i][j - 1], maxnum[i + (1 << (j - 1))][j - 1]);
minnum[i][j] = min(minnum[i][j - 1], minnum[i + (1 << (j - 1))][j - 1]);
}
while (q--)
{
int ans;
scanf("%d%d", &x, &y);
int z = 0;
while (1 << (z + 1) <= y - x + 1)z++;
ans = max(maxnum[x][z], maxnum[y - (1 << z) + 1][z])//用两个区间中取最大值,两个区间长度相等
- min(minnum[x][z], minnum[y - (1 << z) + 1][z]);
printf("%d\n", ans);
}
}
return 0;
}