luogu P1880石子归并

        石子归并

                luogu1880 传送门   noi1995



 

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

4
4 5 9 4

ans:

43
54



 

#include<iostream>
#include<cstdio>
#define maxn 210
using namespace std;
int n;
int a[maxn],sum[maxn];
int dp1[maxn][maxn],dp2[maxn][maxn],ans1=0x3f3f3f3f,ans2;
int main()
{
    cin>>n;//dp1是求最小值的。dp2的是求最大值的,ans1初值赋极大 
    for(int i=1;i<=n;++i)
    {
        scanf("%d",&a[i]);//输入并复制一遍
        a[i+n]=a[i];//准备环形DP 
    }
    for(int i=1;i<=2*n;++i)
    {
        sum[i]=sum[i-1]+a[i];//求前缀和
    } 
    for(int i=2*n-1;i>=1;i--)//右端
    {
        for(int j=i+1;j<=2*n;++j)//左端 
        {
            dp1[i][j]=0x3f3f3f3f;//预处理极大值,这个最好不要放在外边
            //也许会GG,反正我是这样 
            for(int k=i;k<j;++k)//枚举中间值k 
            {
                //动态转移方程
                dp1[i][j]=min(dp1[i][j],dp1[i][k]+dp1[k+1][j]+sum[j]-sum[i-1]); 
                //不合并 或者 选择合并从i~k的区间和从k+1到j的区间在加上他们之间的代价(前缀和之差) 
                dp2[i][j]=max(dp2[i][j],dp2[i][k]+dp2[k+1][j]+sum[j]-sum[i-1]);
                //和上面的同理,不过只是选取最大值 
            }
        }
    }
    for(int i=1;i<=n;++i)//找最大值 
    {
        ans1=min(ans1,dp1[i][i+n-1]);//这不是个环吗,长度是n,每个都枚举一遍 
        //i的坐标知道,j==i+n-1 
        ans2=max(ans2,dp2[i][i+n-1]);//找到最大值 
    }
    cout<<ans1<<'\n'<<ans2;//输出就可以了 
    return 0;
}

 

全部评论

相关推荐

杨柳哥:这不是普通人,那这个钱的是天才
点赞 评论 收藏
分享
1 收藏 评论
分享
牛客网
牛客企业服务