深度学习基础入门篇[9.1]:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解 1.卷积提出背景 在全连接网络[1]中,一张图片上的所有像素点会被展开成一个1维向量输入网络,如 图1 所示,28 x 28的输入数据被展开成为784 x 1 的数据作为输入。 图1 全连接网络图 这样往往会存在如下两个问题: 1. 输入数据的空间信息被丢失。 空间上相邻的像素点往往具有相似的RGB值,RGB的各个通道之间的数据通常密切相关,但是转化成1维向量时,这些信息被丢失。如 图2 所示,空间位置相邻的两个点A和B,转化成1维向量后并没有体现出他们之间的空间关...