LeNet-5结构
参考回答:
C1层:选取66个特征卷积核,大小为5∗55∗5(不包含偏置),得到66个特征图,每个特征图的大小为32−5+1=2832−5+1=28,也就是神经元的个数由10241024减小到了28∗28=78428∗28=784。
输入层与C1层之间的参数:6∗(5∗5+1)6∗(5∗5+1),对于卷积层C1,每个像素都与前一层的5∗55∗5个像素和11个bias有连接,有6∗(5∗5+1)∗(28∗28)6∗(5∗5+1)∗(28∗28)个连接
S2层:池化,是一个下采样层(为什么是下采样?利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息),有66个14∗1414∗14的特征图,特征图中的每个单元与C1中相对应特征图的2∗22∗2邻域相连接。S2S2层每个单元对应C1C1中44个求和,乘以一个可训练参数,再加上一个可训练偏置。
C1与S2之间的参数:每一个2∗22∗2求和,然后乘以一个参数,加上一个偏置,共计2∗6=122∗6=12个参数。S2S2中的每个像素都与C1C1中的2∗22∗2个像素和11个偏置相连接,所以有6∗5∗14∗14=58806∗5∗14∗14=5880个连接
C3层:选取卷积核大小为5∗55∗5,得到新的图片大小为10∗1010∗10我们知道S2包含:6张14∗146张14∗14大小的图片,我们希望这一层得到的结果是:16张10∗1016张10∗10的图片。这1616张图片的每一张,是通过S2S2的66张图片进行加权组合得到的,具体是怎么组合的呢?
S2与C3之间的组合
前66个feature map与S2S2层相连的33个feature map相连接,后面66个feature map与S2层相连的4个S2层相连的4个feature map相连接,后面33个feature map与S2S2层部分不相连的44个feature map相连接,最后一个与S2S2层的所有feature map相连。卷积核大小依然为5∗55∗5,总共有6∗(3∗5∗5+1)6∗(3∗5∗5+1)+6∗(4∗5∗5+1)6∗(4∗5∗5+1)+3∗(4∗5∗5+1)3∗(4∗5∗5+1)+1∗(6∗5∗5+1)=15161∗(6∗5∗5+1)=1516个参数。而图像大小为10∗1010∗10,所以共有151600151600个连接。
S4层
池化,窗口大小为2∗22∗2,有1616个特征图,总共有3232个参数
C3与S4之间的参数
16∗(25∗4+25)=200016∗(25∗4+25)=2000个连接
C5层
F6层
全连接
F6F6相当于MLP中的隐含层,有8484个节点,所以有84∗(120+1)=1016484∗(120+1)=10164个参数。F6F6层采用了正切函数。
输出层