一棵n个点的有根树,1号点为根,相邻的两个节点之间的距离为1。树上每个节点i对应一个值k[i]。每个点都有一个颜色,初始的时候所有点都是白色的。
你需要通过一系列操作使得最终每个点变成黑色。每次操作需要选择一个节点i,i必须是白色的,然后i到根的链上(包括节点i与根)所有与节点i距离小于k[i]的点都会变黑,已经是黑的点保持为黑。问最少使用几次操作能把整棵树变黑。
第一行一个整数n (1 ≤ n ≤ 10^5) 接下来n-1行,每行一个整数,依次为2号点到n号点父亲的编号。 最后一行n个整数为k[i] (1 ≤ k[i] ≤ 10^5) 样例解释: 对节点3操作,导致节点2与节点3变黑 对节点4操作,导致节点4变黑 对节点1操作,导致节点1变黑
一个数表示最少操作次数
4 1 2 1 1 2 2 1
3