首页 > 试题广场 >

Build A Binary Search Tree (30

[编程题]Build A Binary Search Tree (30
  • 热度指数:4239 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 64M,其他语言128M
  • 算法知识视频讲解
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
Both the left and right subtrees must also be binary search trees.

Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.



输入描述:

Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.



输出描述:

For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

示例1

输入

<pre>
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
</pre>

输出

<pre>
58 25 82 11 38 67 45 73 42
</pre>
总的思路:先中序遍历将值输入,再层序遍历输出。🐶
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#define Null -1
using namespace std;
struct tree{
    int left;
    int right;
    int data;
};
int main(){
    int N;
    cin>>N;
    int keys[N];
    tree Tree[N];
    vector<int> v;
    queue<int> q;
    vector<tree> order;
    for(int i=0;i<N;i++){
        cin>>Tree[i].left>>Tree[i].right;
    }
    for(int i=0;i<N;i++){
        cin>>keys[i];
    }
    sort(keys,keys+N);
    int T = 0,i=0;
    while(T!=-1||!v.empty()){
        while(T!=-1){
            v.push_back(T);
            T = Tree[T].left;
        }
        if(!v.empty()){
            T = v.back();
            v.pop_back();
            Tree[T].data = keys[i];
            i++;
            T = Tree[T].right;
        }
    }
    T = 0;
    q.push(T);
   while(!q.empty()){
       T = q.front();
       if(Tree[T].left!=Null)
       q.push(Tree[T].left);
       if(Tree[T].right!=Null)
       q.push(Tree[T].right);
       cout<<Tree[T].data;
       if(q.size()>1)
           cout<<" ";
      q.pop();
   }
}





编辑于 2016-11-15 23:21:47 回复(0)
//思路:显然BST的中序遍历对应从小到大的排列。
//然后利用排序建树,再bfs按层输出即可。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e2+5;
int n,cnt,ok=1,data[maxn],lch[maxn],rch[maxn],A[maxn];
void build(int rt){
    if(rt==-1) return ;
    build(lch[rt]);
    data[rt]=A[++cnt];
    build(rch[rt]);
}
void bfs(){    
    queue<int> que;
    que.push(0);
    while(!que.empty()){
        int tmp=que.front();que.pop();
        if(ok){ ok=0;printf("%d",data[tmp]);}
        else { printf(" %d",data[tmp]);}
        if(lch[tmp]!=-1) que.push(lch[tmp]);
        if(rch[tmp]!=-1) que.push(rch[tmp]);
    }
}
int main(){
    scanf("%d",&n);
    for(int i=0;i<n;++i)
        scanf("%d %d",&lch[i],&rch[i]);
    for(int i=1;i<=n;++i)
        scanf("%d",&A[i]);
    sort(A+1,A+1+n);
    build(0);bfs();
    return 0;
} 

发表于 2018-03-04 12:20:11 回复(0)
//思路远没有上面几位同学的简洁,没有想到中序遍历,
//而是 考虑节点的左侧节点总数,右侧节点的总数,以及父节点的排名,确定 该节点的排名~~~~;
#include<stdio.h>
#include<stdlib.h>
typedef struct QNode{
	    int data;
	    struct QNode *next;
} QNode;
typedef struct{
	QNode *front;
	QNode *rear;
} LinkQueue;
int InitQueue(LinkQueue &L){
	L.front=L.rear=(QNode *)malloc(sizeof(QNode));
	if(!L.front) exit(0);
	L.front->next=NULL;
	return 1;
}
int QueueEmpty(LinkQueue L){
	if(L.front==L.rear) return 1;
	else return 0;
}
int EnQueue(LinkQueue &L, int e){
	QNode *p;
	p=(QNode *)malloc(sizeof(QNode));
	if(!p) exit(0);
	p->data=e; p->next=NULL;
	L.rear->next=p;
	L.rear=p;
	return 1;
}
int DeQueue(LinkQueue &L, int &e){
	QNode *p;
	if(L.front==L.rear) return 0;
	p=L.front->next;
	e=p->data;
	L.front->next=p->next;
	if(L.rear == p) L.rear=L.front;
	free(p);
	return 1;	
}

typedef struct{
        int lchildId;
        int rchildId;
        int lchildNum;
        int rchildNum;
        int rank;
       } BStree;
int childNumCount(BStree treeList[], int startId){
	 if(treeList[startId].lchildId==-1)
	   treeList[startId].lchildNum=0;
	 else
	   treeList[startId].lchildNum=childNumCount(treeList,treeList[startId].lchildId)+1;
 	 
     if(treeList[startId].rchildId==-1)
        treeList[startId].rchildNum=0;
 	 else 
	    treeList[startId].rchildNum=childNumCount(treeList,treeList[startId].rchildId)+1;
	 
	 return treeList[startId].lchildNum + treeList[startId].rchildNum;	 
}
void rankCount(BStree treeList[], int curId, int parentRank, int preChild){
	if(!preChild) treeList[curId].rank=parentRank-treeList[curId].rchildNum-1;
	else treeList[curId].rank=parentRank+treeList[curId].lchildNum+1;
	if(treeList[curId].lchildId!=-1)
		rankCount(treeList,treeList[curId].lchildId,treeList[curId].rank,0);
		
	if(treeList[curId].rchildId!=-1)
	     rankCount(treeList,treeList[curId].rchildId,treeList[curId].rank,1);
}

void listOutPut(BStree treeList[], int list[]){
	 LinkQueue L;
	 int parent,child;
	 InitQueue(L);
	 printf("%d",list[treeList[0].rank]);
	 child=treeList[0].lchildId;
	 if(child!=-1) EnQueue(L,child);
	 child=treeList[0].rchildId;
	 if(child!=-1) EnQueue(L,child);
	 while(!QueueEmpty(L)){
 		DeQueue(L,parent);
		printf(" %d",list[treeList[parent].rank]);
		child=treeList[parent].lchildId;
		if(child!=-1) EnQueue(L,child);
		child=treeList[parent].rchildId;
		if(child!=-1) EnQueue(L,child);
 	}
 	printf("\n");
} 

int QsortPartition(int list[],int low,int high){
	int temp;
	temp=list[low];
	while(low<high){
		while(temp<=list[high] && low<high) high--;
		list[low]=list[high];
		while(temp>=list[low] && low<high) low++;
		list[high]=list[low];
	}
	list[low]=temp;
	return low;
}
void Qsort(int list[], int low, int high){
	int median;
	if(low<high){
	  median=QsortPartition(list,low,high);
	  Qsort(list,low,median-1);
	  Qsort(list,median+1,high);  
	}
} 
int main(){
	int N;
	BStree *treeList;
	int *list,i,lchild,rchild,rankRoot;
	scanf("%d",&N);
	treeList=(BStree *)malloc(N*sizeof(BStree));
	list=(int *)malloc(N*sizeof(int));
	for(i=0;i<N;i++){
		scanf("%d %d",&lchild,&rchild);
		treeList[i].lchildId=lchild;
		treeList[i].rchildId=rchild;
	}
	for(i=0;i<N;i++) scanf("%d",list+i);
	Qsort(list,0,N-1);
	childNumCount(treeList,0);
	rankCount(treeList,0,N,0);
	listOutPut(treeList,list);
}

发表于 2016-09-08 14:49:49 回复(1)
可以使用两个vector,分别保存排序后的key和中序遍历的节点号
//binary search tree
#include<iostream>
#include<queue>
#include<algorithm>
#include<vector>
using namespace std;

struct node{
	int key;
	int pos;
	node* left;node* right;
};
node* pointers[200];
vector<int> serial;
vector<int> record;//to remember which pos has which key

void midOrder(node* root){
	if(root==NULL){
		return;
	}
	midOrder(root->left);
	record.push_back(root->pos);
	midOrder(root->right);
}


void level_traverse(node* root){
	node* p=root;
	queue<node*> line;
	line.push(p);
	while(!line.empty()){
		p=line.front();
		line.pop();
		if(p->left!=NULL)line.push(p->left);
		if(p->right!=NULL)line.push(p->right);
		cout<<p->key;if(!line.empty())cout<<" ";
	}
}

int main(){
	int n,t;
	int l,r;
	cin>>n;
	for(int i=0;i<200;i++){
		pointers[i]=new node;
	} 
	for(int i=0;i<n;i++){
		cin>>l>>r;
		pointers[i]->pos=i;//
		if(l!=-1)pointers[i]->left=pointers[l];
		else pointers[i]->left=NULL;
		if(r!=-1)pointers[i]->right=pointers[r];
		else pointers[i]->right=NULL;
	}
	for(int i=0;i<n;i++){
		cin>>t;
		serial.push_back(t);
	}
	sort(serial.begin(),serial.end());
	//for(int i=0;i<serial.size();i++)cout<<serial[i]<<" ";
	//cout<<endl;
	midOrder(pointers[0]);
	for(int i=0;i<record.size();i++){
		t=record[i];
		pointers[t]->key=serial[i];
	}
	
	level_traverse(pointers[0]);
	
	return 0;
}

发表于 2021-08-15 20:23:30 回复(0)
a = int(input())
b = [list(map(int,input().split())) for i in range(a)]
m = [-1 for i in range(a)]
m[0],n = (2 ** a,a),[0]
for i in n:
    for j in range(2):
        if b[i][j] != -1:
            m[b[i][j]] = m[i][0] - (-1) ** j * 2 ** (m[i][1] - 1),m[i][1] - 1
            n.append(b[i][j])

p = dict(zip(sorted(m),sorted(map(int,input().split()))))
print(' '.join(map(str,[p[i] for i in sorted(p,key = lambda x:(-x[1],x[0]))])))

发表于 2020-03-09 09:48:40 回复(0)
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn=110;
struct node{
    int value;
    int lchild,rchild;
}Node[maxn];
int n,data[maxn],index=0;
void create(int root){                //中序建造二叉排序树
    if(root==-1) return;              //递归边界(空结点)
    create(Node[root].lchild);
    Node[root].value=data[index++];
    create(Node[root].rchild);
}
void layerOrder(int root){            //层序遍历
    queue<int> q;
    q.push(root);
    while(!q.empty()){
        int now=q.front();
        q.pop();
        if(Node[now].lchild!=-1) q.push(Node[now].lchild);
        if(Node[now].rchild!=-1) q.push(Node[now].rchild);
        cout<<Node[now].value;
        if(!q.empty()) cout<<" ";
    }
}
int main(){
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>Node[i].lchild>>Node[i].rchild;
    for(int i=0;i<n;i++)
        cin>>data[i];
    sort(data,data+n);       //将输入序列升序排序即得BST中序序列
    create(0);
    layerOrder(0);
    return 0;
} 

发表于 2019-01-22 13:16:35 回复(1)
请问一下测试数据生成树的时候,前9行已经把一颗树的所有叶节点都定下来了(所有叶节点下面都是-1,已经没办法再扩展了),测试数据是不是有问题?
就是50个节点的那个测试数据
编辑于 2017-11-03 10:26:59 回复(6)
开始有点傻了,还用递归来输入节点序号,其实是按顺序的
1.中序遍历把排序后的数值安排上了
2.利用队列层次遍历输出
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef struct {
    int val;
    int left;
    int right;
} Node;
Node node[100];
int value[100];
int cont = 0;
void travel(int v);

int main(void) {
    int n, i;
    
    cin >> n;
    for (i = 0; i < n; i++)
	cin >> node[i].left >> node[i].right;
    for (i = 0; i < n; i++)
        cin >> value[i];
	
    sort(value, value+n);
    travel(0);
	
    queue<int> q;
    q.push(0);
    cout << node[0].val;
    while (!q.empty()) {
        int v = q.front();
        q.pop();
		if (node[v].left != -1)			q.push(node[v].left);
	    if (node[v].right != -1)		q.push(node[v].right);
        if (v != 0)     cout << " " << node[v].val;        
    }    
    cout << endl;
    
    return 0;
}

void travel(int v) {
    if (v == -1)    return;
    travel(node[v].left);
    node[v].val = value[cont++];
    travel(node[v].right);  
}

发表于 2017-08-24 21:25:23 回复(0)
只要知道某结点的左孩子数然后对应排好序的序列里的位置就OK,往右孩子递归的话序列从右孩子对应数值右边一个元素作为数组原点,往左孩子递归直接用与本层递归相同数组即可。
#include<iostream>
#include<cstdlib>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
typedef struct node{
	int data;
	int Lchild;
	int Rchild;
}BiTNode,*BiTree;

void Crt_BiTree(vector<BiTree> &BT,int N){
	for(int i=0; i<N; i++){
		BT[i] = (BiTNode *)malloc(sizeof(BiTNode));
		BT[i]->data = 0;
		cin>>BT[i]->Lchild;
		cin>>BT[i]->Rchild;
	}
	return;
}

int Node_Num(vector<BiTree> &BT,int m_root){
	if(m_root == -1)
		return 0;
	int count = 1;
	queue<int> Q;
	int p = m_root;
	Q.push(p);
	while(!Q.empty()){
		p = Q.front();
		Q.pop();
		if(BT[p]->Lchild != -1){
			Q.push(BT[p]->Lchild);
			count++;
		}
		if(BT[p]->Rchild != -1){
			Q.push(BT[p]->Rchild);
			count++;
		}
	}
	return count;
}

void Log(vector<BiTree> &BT,int *Seq,int root){

	if(root == -1)
		return;
	int l_num = Node_Num(BT,BT[root]->Lchild);
//	printf("%d 号结点有 %d 个左孩子\n",root,l_num);
	BT[root]->data = *(Seq + l_num);
//	printf("将数据 %d 装载进 %d 号容器\n",*(Seq+l_num),root);
	Log(BT,Seq,BT[root]->Lchild);
	Log(BT,Seq + l_num + 1,BT[root]->Rchild);
	return;
}

void Layer_Order(vector<BiTree> &BT){
	queue<int> Q;
	int p = 0;
	Q.push(p);
	while(!Q.empty()){
		p = Q.front();
		Q.pop();
		if(Q.empty() && BT[p]->Lchild == -1 && BT[p]->Rchild == -1)
			printf("%d\n",BT[p]->data);
		else
			printf("%d ",BT[p]->data);
		if(BT[p]->Lchild != -1)
			Q.push(BT[p]->Lchild);
		if(BT[p]->Rchild != -1)
			Q.push(BT[p]->Rchild);
	}
}

int main(){
	vector<BiTree> BT;
	int N;
	cin>>N;
	BT.resize(N);
	Crt_BiTree(BT,N);
	int Seq[100];
	for(int i=0; i<N; i++)
		cin>>Seq[i];
	sort(Seq,Seq+N);
	Log(BT,Seq,0);
	Layer_Order(BT);
	return 0;
} 


发表于 2017-02-20 22:41:27 回复(0)
//根据图中对二叉搜索树的标号方式,输入的左右子节点直接就是邻接链表啊
//原来深度优先搜索和广度优先搜索应用这么广泛
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
//输入最多100个数,直接就给它105个
int sorted[105];//按大小排好序的数组
int values[105];//根据图中二叉搜索树的标号方式形成的数组
int childs[105][2];//childs[curr][0]表示curr节点的左孩子节点
void dfs(int now, int &k) {//中序遍历(包含深度优先搜索,只要可能,先尽可能深入)
	if (now < 0) {
		return;
	}
	dfs(childs[now][0], k);
	values[now] = sorted[k];
	++k;//k是一个引用,记录已经填了几个值了
	dfs(childs[now][1], k);
}
void bfs() {//广度优先搜索
	queue<int> que;
	que.push(0);
	while (!que.empty()) {
		int v = que.front();
		que.pop();
		if (v == 0) {
			cout << values[0];
		}
		else {
			cout << " " << values[v];
		}
		//哦,这样就可以进行层序遍历,这不就是广度优先搜索吗!
		if (childs[v][0]>0)
			que.push(childs[v][0]);
		if (childs[v][1] > 0)
			que.push(childs[v][1]);
	}
	cout << endl;
}
int main() {
	ios::sync_with_stdio(false);
	int N;
	cin >> N;
	for (int i = 0;i < N;++i) {
		//输入直接就是一个邻接链表啊,一开始没发现
		cin >> childs[i][0] >> childs[i][1];
	}
	for (int i = 0;i < N;++i) {
		cin >> sorted[i];
	}
	sort(sorted, sorted + N);//原来数组也可以这样排序,我是个菜鸟
	//填值
	int c = 0;//跟踪填到第几个值了
	dfs(0, c);
	//广度优先搜索进行层序遍历
	bfs();
}

发表于 2015-11-21 17:49:03 回复(2)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector> 
#include <queue> 

using namespace std;

struct Tree
{     int left;     int right;     int data;
};

int main()
{     int N;     cin>>N;     int keys[N];     Tree T[N];     vector<int> v;     queue<int> q;     vector<Tree> order;     for(int i=0;i<N;i++)         cin>>T[i].left>>T[i].right;     for(int i=0;i<N;i++)         cin>>keys[i];     sort(keys,keys+N);     int t=0,i=0;     while(t!=-1 || !v.empty())     {         while(t!=-1)         {             v.push_back(t);             t = T[t].left;         }         if(!v.empty())         {             t = v.back();             v.pop_back();             T[t].data = keys[i];             i++;             t = T[t].right;         }     }     t = 0;     q.push(t);     while(!q.empty())     {         t = q.front();         if(T[t].left != -1)             q.push(T[t].left);         if(T[t].right != -1)             q.push(T[t].right);         cout<<T[t].data;         if(q.size()>1)             cout<<" ";         q.pop();     }     return 0;
}

发表于 2018-02-16 20:45:12 回复(0)
#include<bits/stdc++.h>
using namespace std;

const int Max=110;
int n,num[Max],id;

struct Node {
	int data;
	int lchild,rchild;
} node[Max];

void Inorder(int root) {
	if(root==-1) return ;
	Inorder(node[root].lchild);
	node[root].data=num[id++];
	Inorder(node[root].rchild);
}

int sum;
void BFS(int root) {
	queue<int> q;
	q.emplace(root);
	while(!q.empty()) {
		int now=q.front();
		q.pop();
		printf("%d",node[now].data);
		sum++;
		if(sum<n) {
			printf(" ");
		}
		if(node[now].lchild!=-1) q.emplace(node[now].lchild);
		if(node[now].rchild!=-1) q.emplace(node[now].rchild);
	}
}

int main() {
	scanf("%d",&n);
	int l,r;
	for(int i=0; i<n; i++) {
		scanf("%d %d",&l,&r);
		node[i].lchild=l;
		node[i].rchild=r;
	}
	for(int i=0; i<n; i++) {
		scanf("%d",&num[i]);
	}
	sort(num,num+n);
	Inorder(0);
	BFS(0);
	printf("\n");
	return 0;
}

发表于 2022-11-26 18:48:26 回复(0)


更多PAT甲级详解--acking-you.github.io

题目


OJ平台

题目大意

文章文字那么长,主要就掌握三点:

  1. 输入给到二叉搜索树的树形结构。
  2. 给出一堆数据填入这些结点中,使其满足二叉搜索树。
  3. 按层序遍历输出二叉搜索树的数据。
  • 好了,我们清楚了这三点后,我们最关键的就在于怎么把这棵树填充成二叉搜索树?

由于二叉搜索树的性质,它的中序遍历正好就是从小到大的序列,诶!这不正好可以利用这个性质来赋值吗?我们直接把给的数据排序,然后根据中序遍历的顺序进行赋值即可!

代码详解

输入输出前的准备

所需变量:

int N;
int* nums; //用于动态分配掌握全局
int tot = 0;//游标用于赋值
queue<int>Q;//用于层序遍历输出答案
struct node { //每个树的结点(其实也可以设为动态
    int val, l, r;
    node(): val(0), l(-1), r(-1) {}
} Treenode[101];

输入的处理

Input函数

//@输入处理
void Input() {
    ios::sync_with_stdio(false);
    cin >> N;
    for (int i = 0; i < N; i++) { //由图中可知,这个左右子树编号正好是根据这个序号来给的
        cin >> Treenode[i].l >> Treenode[i].r;
    }
    nums = new int[N];//申请内存存储每个结点的值
    for (int i = 0; i < N; ++i) {
        cin >> nums[i];
    }
    sort(nums, nums + N); //由于我们已经知道二叉搜索树的树形结构,而它的值是遵循中序遍历递增的规律的
}

输出的处理

//@中序赋值
void Inorder(int node) {
    if (node == -1)
        return;
    Inorder(Treenode[node].l);//左子树
    Treenode[node].val = nums[tot++];
    Inorder(Treenode[node].r);//右子树
}

//@BFS打印
void print() {
    Q.push(0);
    while (!Q.empty()) {
        int node = Q.front(); Q.pop();
        if (Treenode[node].l != -1)
            Q.push(Treenode[node].l);
        if (Treenode[node].r != -1)
            Q.push(Treenode[node].r);
        cout << Treenode[node].val;
        if (!Q.empty())
            cout << ' ';
    }
}

整合代码提交

效率还行!

#include <bits/stdc++.h>
using namespace std;
//利用二叉搜索树的性质--中序遍历的序列是递增序列
int N;
int *nums;
int tot = 0;//游标用于赋值
queue<int> Q;//用于最后层序遍历输出答案
struct node {
    int val, l, r;
    node() : val(0), l(-1), r(-1) {}
} Treenode[101];

//@输入处理
void Input() {
    ios::sync_with_stdio(false);
    cin >> N;
    for (int i = 0; i < N; i++) {//由图中可知,这个左右子树编号正好是根据这个序号来给的
        cin >> Treenode[i].l >> Treenode[i].r;
    }
    nums = new int[N];//申请内存存储每个结点的值
    for (int i = 0; i < N; ++i) {
        cin >> nums[i];
    }
    sort(nums, nums + N);//由于我们已经知道二叉搜索树的树形结构,而它的值是遵循中序遍历递增的规律的
}

//@中序赋值
void Inorder(int node) {
    if (node == -1)
        return;
    Inorder(Treenode[node].l);//左子树
    Treenode[node].val = nums[tot++];
    Inorder(Treenode[node].r);//右子树
}

//@BFS打印
void print() {
    Q.push(0);
    while (!Q.empty()) {
        int node = Q.front();
        Q.pop();
        if (Treenode[node].l != -1)
            Q.push(Treenode[node].l);
        if (Treenode[node].r != -1)
            Q.push(Treenode[node].r);
        cout << Treenode[node].val;
        if (!Q.empty())
            cout << ' ';
    }
}

int main() {
    Input();
    Inorder(0);
    print();
    return 0;
}
发表于 2021-09-21 15:04:26 回复(0)
# include <iostream>
# include <queue>
# include <algorithm>
using namespace std;
struct Tree{
    int key;
    int right;
    int left;
};
int a[101], idx = 0;
void mid(int root, Tree *t) {
    if (root != -1) {
        mid(t[root].left, t);
        t[root].key = a[idx++];
        mid(t[root].right, t);
    }
}
int main() {
    ios::sync_with_stdio(false);
    int n, temp;
    cin >> n;
    Tree *tree = new Tree[n];
    queue<int> q;
    for (int i = 0; i < n; i++) {
        cin >> tree[i].left >> tree[i].right;
    }
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }
    sort(a, a + n);
    mid(0, tree);
    q.push(0);
    while (!q.empty()) {
        temp = q.front();
        if (tree[temp].left != -1)q.push(tree[temp].left);
        if (tree[temp].right != -1)q.push(tree[temp].right);
        cout << tree[temp].key;
        if (q.size() > 1)cout << ' ';
        q.pop();
    }
}
发表于 2021-03-06 21:39:50 回复(0)
这个题气死我了,我输入还以为是按前序遍历输入,怎么都不对,但是给的样例没问题。后来才意识到他就是纯顺序输入,样例给的刚好是前序遍历的顺序!!!!!我说怎么回事
//
//  main.cpp
//  pat BABST
//
//  Created by 徐早辉 on 2021/1/30.
//

#include <iostream>
#include <vector>
#include <stack>
#include <map>
#include <set>
#include <algorithm>

using namespace std;
int nump;
int ct=0;

stack<int> stk;
map<int, vector<int>> tree;
vector<int> tp;
vector<int> list;

void countnum(int num){
    if (tree[num][0]!=-1) {
        countnum(tree[num][0]);
    }
    tree[num][2]=ct;
    ct++;
    if (tree[num][1]!=-1) {
        countnum(tree[num][1]);
    }
}

int main(int argc, const char * argv[]) {
    stk.push(-1);
    int temp=0,tpr,tpl;
    cin>>nump;
    for (int i=0; i<nump; i++) {
        cin>>tpl>>tpr;
        tp.clear();
        tp.push_back(tpl);
        tp.push_back(tpr);
        tp.push_back(0);
        tree[i]=tp;
    }
    for (int i=0; i<nump; i++) {
        cin>>temp;
        list.push_back(temp);
    }
    sort(list.begin(),list.end());
    countnum(0);
    tp.clear();
    tp.push_back(0);
    while (tp.size()!=0) {
        cout<<list[tree[*(tp.begin())][2]];
        if (tree[*(tp.begin())][0]!=-1) {
            tp.push_back(tree[*(tp.begin())][0]);
        }
        if (tree[*(tp.begin())][1]!=-1) {
            tp.push_back(tree[*(tp.begin())][1]);
        }
        tp.erase(tp.begin());
        if (tp.size()!=0) {
            cout<<" ";
        }
    }
    return 0;
}

发表于 2021-01-31 13:28:10 回复(0)
JAVA这么做!
import java.util.*;
import java.util.LinkedList;

/**
 * Copyright (C), 2019-2020, CPS Lab
 *
 * @ProjectName: PATProjects
 * @Package: PACKAGE_NAME
 * @ClassName: PAT30
 * @Author: Tristan Shu
 * @CreateDate: 2020/10/13 7:08 下午
 * @Version: 1.0
 */
public class Main {
    private static Nodes[] nodes;
    private static int[] data;
    private static StringBuilder builder= new StringBuilder();
    private static class Nodes{
        int left;
        int right;
        int val;
        Nodes(int right,int left){
            this.left = left;
            this.right = right;
        }
    }
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt();
        nodes = new Nodes[N];
        data = new int[N];
        for (int i = 0; i < N; i++) {
            int left = sc.nextInt();
            int right = sc.nextInt();
            nodes[i] = new Nodes(right,left);
        }
        for(int i = 0; i < N; i++){
            data[i] = sc.nextInt();
        }
        Arrays.sort(data);
        inOrderTraverse(nodes[0],0);
        List<Nodes> list = new LinkedList<>();
        list.add(nodes[0]);
        outPut(list);
        System.out.println(builder.toString());
    }
    private static int inOrderTraverse(Nodes root,int index){
        if(root != null){
            if(root.left != -1)
            index = inOrderTraverse(nodes[root.left],index);
            root.val = data[index++];
            if(root.right != -1)
            index = inOrderTraverse(nodes[root.right],index);
        }
        return index;
    }
    private static void outPut(List<Nodes> list){
        Nodes nodesTemp = list.remove(0);
        builder.append(nodesTemp.val + " ");
        if(nodesTemp.left != -1){
            list.add(nodes[nodesTemp.left]);
        }
        if(nodesTemp.right != -1){
            list.add(nodes[nodesTemp.right]);
        }
        if(!list.isEmpty()){
            outPut(list);
        }
    }
}

编辑于 2020-10-13 22:10:00 回复(1)
#include<iostream>
(720)#include<vector>
#include<algorithm>
(831)#include<queue>
using namespace std;
struct bst{
    int val;
    int left;
    int right;
    bst(int v,int l,int r):val(v),left(l),right(r){}
};
bst* BST[101];
queue<int>myQueue;
vector<int>seq;
int index=0;
void MidOrder(int root){
    if(root==-1){return;}
    MidOrder(BST[root]->left);
    BST[root]->val=seq[index++];
    MidOrder(BST[root]->right);
}
void levelOrder(int root){
    if(root==-1){return;}
    bool flag=true;
    myQueue.push(root);
    while(!myQueue.empty()){
        int current=myQueue.front();
        myQueue.pop();
        if(flag){printf("%d",BST[current]->val);flag=false;}
        else{printf(" %d",BST[current]->val);}
        if(BST[current]->left!=-1){myQueue.push(BST[current]->left);}
        if(BST[current]->right!=-1){myQueue.push(BST[current]->right);}
    }
}
int main(){
    int n;
    cin>>n;
    int leftC,rightC;
   for(int i=0;i<n;i++){
       cin>>leftC>>rightC;
       BST[i]=new bst(0,leftC,rightC);
   }
    int key;
    while(n--){
        cin>>key;
        seq.push_back(key);
    }
    sort(seq.begin(),seq.end());
    MidOrder(0);
    levelOrder(0);
}

发表于 2020-02-25 16:10:12 回复(0)
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Queue;
import java.util.Scanner;

public class Main {
    static Scanner sc = new Scanner(System.in);
    static int n = sc.nextInt();
    static Node[] node = new Node[n];
    static StringBuilder builder = new StringBuilder();

    public static class Node {
        int val;
        int left;
        int right;

        public Node(int left, int right) {
            this.left = left;
            this.right = right;
        }
    }

    public static void main(String[] args) {


        for (int i = 0; i < n; i++) {
            int left = sc.nextInt();
            int right = sc.nextInt();
            node[i] = new Node(left, right);
        }
        int[] datas = new int[n];
        for (int i = 0; i < n; i++) {
            datas[i] = sc.nextInt();
        }
        
        //二叉搜索树中序遍历就是从小到大排序
        Arrays.sort(datas);
        Assignment(0, datas, 0);

        Queue<Node> queue = new ArrayDeque<>();
        queue.add(node[0]);
        Output(queue);
        System.out.println(builder.substring(0,builder.length()-1));
    }

    private static void Output(Queue<Node> queue) {
        Node node1 = queue.poll();
        builder.append(node1.val + " ");
        if (node1.left != -1) {
            queue.add(node[node1.left]);
        }
        if (node1.right != -1) {
            queue.add(node[node1.right]);
        }
        if (!queue.isEmpty()) {
            Output(queue);
        }
    }
    
    //左根右的赋值,构造二叉搜索树
    private static int Assignment(int key, int[] datas, int index) {
        if (node[key].left != -1)
            index = Assignment(node[key].left, datas, index);
        node[key].val = datas[index++];
        if (node[key].right != -1)
            index = Assignment(node[key].right, datas, index);
        return index;
    }
}

发表于 2019-12-05 20:28:43 回复(0)
把给的那一串数排序以后,用一个前序遍历的dfs把这些数字按顺序填进对应的位置,然后一个bfs输出结果。
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>

using namespace std;

int lch[100], rch[100], values[100], nodes[100];
int idx = 0;

void dfs(int x){
    if(lch[x] != -1) dfs(lch[x]);
    nodes[x] = values[idx++];
    if(rch[x] != -1) dfs(rch[x]);
}

int main(void){
    int N;
    cin >> N;
    for(int i = 0; i < N; i++){
        cin >> lch[i] >> rch[i];
    }
    for(int i = 0; i < N; i++){
        cin >> values[i];
    }
    sort(values, values + N);
    dfs(0);
    queue<int> que;
    que.push(0);
    while(!que.empty()){
        int x = que.front(); que.pop();
        if(x == -1) continue;
        if(x != 0) cout << " ";
        cout << nodes[x];
        que.push(lch[x]);
        que.push(rch[x]);
    }
    cout << endl;
}



发表于 2019-08-22 23:14:20 回复(0)
//开始懵逼了,以为是按照前序遍历输入的左右孩子,用了个递归输入。
//仔细审题后发现就是按照顺序简单的输入就可以了..
//其实题目就是一个中序遍历填数据,一个层序输出就可以了
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
struct node
{
int k;
int left, right;
};
node t[100];
int n;
int a[100];
int j = 0;
void insert(int i)
{
if (i == -1)
return;
insert(t[i].left);
t[i].k = a[j++];
insert(t[i].right);
}
void print(int i)
{
int flag = 1;
queue<int>q;
q.push(i);
while (!q.empty())
{
int x = q.front(); q.pop();
if (flag == 1)
{
cout << t[x].k;
flag = 0;
}
else
cout << ' ' << t[x].k;
if (t[x].left != -1)
q.push(t[x].left);
if (t[x].right != -1)
q.push(t[x].right);
}
}
int main(void)
{
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> t[i].left >> t[i].right;
}
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
sort(a, a + n);
insert(0);
print(0);
return 0;
}
编辑于 2019-02-24 17:51:26 回复(0)

问题信息

难度:
29条回答 55525浏览

热门推荐

通过挑战的用户

Build A Binary Search Tree (30)