一座大楼有 n+1 层,地面算作第0层,最高的一层为第 n 层。已知棋子从第0层掉落肯定不会摔碎,从第 i 层掉落可能会摔碎,也可能不会摔碎。
给定整数 n 作为楼层数,再给定整数 k 作为棋子数,返回如果想找到棋子不会摔碎的最高层数,即使在最差的情况下扔的最小次数。一次只能扔一个棋子。
数据范围:
要求:空间复杂度 ,时间复杂度 (m是最终返回的结果)
10,1
10
因为只有1棵棋子,所以不得不从第1层开始一直试到第10层,在最差的情况下,即第10层是不会摔坏的最高层,最少也要扔10次
3,2
2
先在2层扔1棵棋子,如果碎了,试第1层,如果没碎,试第3层
105,2
14
第一个棋子先在14层扔,碎了则用仅存的一个棋子试1~13层
若没碎,第一个棋子继续在27层扔,碎了则用仅存的一个棋子试15~26层
若没碎,第一个棋子继续在39层扔,碎了则用仅存的一个棋子试28~38层
若没碎,第一个棋子继续在50层扔,碎了则用仅存的一个棋子试40~49层
若没碎,第一个棋子继续在60层扔,碎了则用仅存的一个棋子试51~59层
若没碎,第一个棋子继续在69层扔,碎了则用仅存的一个棋子试61~68层
若没碎,第一个棋子继续在77层扔,碎了则用仅存的一个棋子试70~76层
若没碎,第一个棋子继续在84层扔,碎了则用仅存的一个棋子试78~83层
若没碎,第一个棋子继续在90层扔,碎了则用仅存的一个棋子试85~89层
若没碎,第一个棋子继续在95层扔,碎了则用仅存的一个棋子试91~94层
若没碎,第一个棋子继续在99层扔,碎了则用仅存的一个棋子试96~98层
若没碎,第一个棋子继续在102层扔,碎了则用仅存的一个棋子试100、101层
若没碎,第一个棋子继续在104层扔,碎了则用仅存的一个棋子试103层
若没碎,第一个棋子继续在105层扔,若到这一步还没碎,那么105便是结果
class Solution: def solve(self , n: int, k: int) -> int: # write code here memo={} def dp(n,k): if k==1:return n if n==0:return 0 if (n,k) in memo.keys(): return memo[(n,k)] res=float('Inf') left=1 right=n while left<=right: mid=(left+right)//2 broken=dp(mid-1,k-1) no_broken=dp(n-mid,k) if broken>no_broken: res=min(res,broken+1) right=mid-1 else: res=min(res,no_broken+1) left=mid+1 memo[(n,k)]=res return res return dp(n,k)超时了
from functools import lru_cache class Solution: def solve(self, n, k): @lru_cache() def f(i, n): if i == 1:return n if n == 1:return 1 return f(i, n-1) + f(i-1, n-1) + 1 res = 1 while f(k, res) < n: res += 1 return res