#include <iostream>
struct Line
{
int x;
int y;
};
void yanfa2012q5()
{
Line lines[3];
lines[0].x=1;
lines[0].y=5;
lines[1].x=2;
lines[1].y=8;
lines[2].x=3;
lines[2].y=9;
int length,maxLength=0;
for (int i=0;i<3;i++)
{
for (int j=i+1;j<3;j++)
{
if (lines[i].y>lines[j].x)
{
//如果XB>XA,长度=YA-XB,否则长度=YA-XA
length=lines[i].y-(lines[j].x>lines[i].x?lines[j].x:lines[i].x);
if (length>maxLength||0==maxLength)
{
maxLength=length;
}
}
}
}
std::cout<<"最大长度"<<maxLength<<std::endl;
}
比如我们想求Sn(Sn表示从求从第一个segment开始,总共有n个元素的子问题,求这个子问题的最大重合线段。),首先我们要证明这是一个动态规划问题:
我们要求Sn问题的最大重合线段,那么它只有可能有两种来源:
(1)Sn-1问题的最大重合线段,即Sn的最大重合线段出自前n-1个线段;
(2)第n个线段Segment[n-1](注意:我是从0开始计数的,所以下标为n-1的就是第n个线段)和前n-1个线段的重合线段中最长的那一个。
所以,问题的解法如下:
(1)首先按照所有线段的end值对所有线段进行排序;
(2)递归的从后往前求解,比如求Sn的最大重合线段,先通过递归求出Sn-1的最大重合线段(tmpMaxSeg),再求出Segment[n-1]和前n-1个线段的重合线段中最长的那一个(currMaxSeg),比较tmpMaxSeg和currMaxSeg的长度,选出最长的作为Sn的返回值。
(3)注意:递归出口:size==2时,只有两个线段,通过简单比较就可以得出最大覆盖线段;
至于这块儿:是为了应对原本传入的线段数组的大小小于等于1的情况,算是边界条件处理了,不是递归的出口。
假如传入数组大小为3,递归执行到数组大小为2时就可以返回了。
#include <iostream> #include <cstdlib> #include <algorithm> const int LEN = 3; using namespace std; struct segment { int start; int end; }; // assume a.end < b.end segment commonSeg(const segment & a, const segment & b) { segment CommonSeg; if(a.end < b.start) { CommonSeg.end = 0; CommonSeg.start = 0; } else { CommonSeg.end = a.end; CommonSeg.start = b.start; } return CommonSeg; } int findMaxSegment(int size, segment * Segment, segment & maxSeg) { if(NULL == Segment) { cerr << "the segment array is NULL" << endl; return -1; } else if(1 == size) { maxSeg = Segment[0]; return maxSeg.end-maxSeg.start; } else if(2 == size) { if(Segment[0].end <= Segment[1].start) { maxSeg.start = 0; maxSeg.end = 0; return maxSeg.end-maxSeg.start; } else { maxSeg.end = Segment[0].end; maxSeg.start = Segment[1].start; return maxSeg.end-maxSeg.start; } } else { segment tmpMaxSeg, tmpSeg,currMaxSeg; int currMaxLen = 0; findMaxSegment(size-1, Segment, tmpMaxSeg); for(int i=0; i<size-1; i++) { tmpSeg=commonSeg(Segment[i], Segment[size-1]); if(tmpSeg.end - tmpSeg.start > currMaxLen) { currMaxLen = tmpSeg.end - tmpSeg.start; currMaxSeg = tmpSeg; } } if(tmpMaxSeg.end - tmpMaxSeg.start > currMaxLen ) { maxSeg = tmpMaxSeg; } else { maxSeg = currMaxSeg; } return maxSeg.end - maxSeg.start; } } bool isShorter(const segment & s1, const segment & s2) { return s1.end < s2.end; } int main() { segment * Segment = new segment[LEN]; Segment[0].start = 1; Segment[0].end = 5; Segment[1].start = 2; Segment[1].end = 8; Segment[2].start = 3; Segment[2].end = 9; sort(Segment, Segment + LEN, isShorter); segment maxSeg; findMaxSegment(LEN, Segment, maxSeg); cout << maxSeg.start << endl; cout << maxSeg.end << endl; delete [] Segment; return 0; }