对于长度为n的一个字符串A(仅包含数字,大小写英文字母),请设计一个高效算法,计算其中最长回文子串的长度。
public int getLongestPalindrome(String A, int n) { if(n == 0) return 0; if(n == 1) return 1; int maxLen = 1; for(int i = 0; i<n; i++){ for(int j = 1; i-j>=0 && i+j<n; j++){ if(A.charAt(i-j) == A.charAt(i+j)){ int len = 2*j+1; maxLen = Math.max(len,maxLen); } if(A.charAt(i-j) != A.charAt(i+j))break; } for(int k = 1; i-k+1>=0 && i+k<n; k++){ if(A.charAt(i-k+1) == A.charAt(i+k) ) { int len = 2*k; maxLen = Math.max(len,maxLen); } if(A.charAt(i-k+1) != A.charAt(i+k)) break; } } return maxLen; }
#马拉车中心扩散 class Solution: def getLongestPalindrome(self, A, n): strin = [] A = list(A) A.reverse() for i in range(2*n+1): if i % 2 == 0: strin.append('*') else: strin.append(A.pop()) maxr = 0 for index,item in enumerate(strin): step = 1 try: while strin[index-step] == strin[index+step]: step+=1 except: rest = step - 1 if rest > maxr: maxr = rest continue rest = step - 1 if rest > maxr: maxr = rest return maxr
class Solution { public: int getLongestPalindrome(string A, int n) { // write code here int Max = 0,i = 0,j = 0,k = 0,tmp = 0; for(i = 0; i < n;i++) { if(A[i] != A[i + 1] && A[i] != A[i + 2]) { continue; }else{ if(A[i] == A[i + 1]) { if(A[i] != A[i + 2]) { tmp = 2; k = i+2; }else{ if(A[i - 1] == A[i + 2]) { tmp = 2; k = i+2; }else{ tmp = 3; k = i + 3; } } }else if(A[i] == A[i + 2]) { tmp = 3; k = i + 3; } for(j = i-1;j >= 0 && k <= n;j--,k++) { if(A[j] == A[k]) { tmp += 2; }else{ break; } } if(Max < tmp) Max = tmp; } } return Max; } };
时间复杂度:o(n) import java.util.*; public class Solution { public int getLongestPalindrome(String A, int n) { // write code here char[] chars = A.toCharArray(); int max = 1; int left,right; for(int i = 0 ; i < n;i++){ int res1 = process(chars,i-1,i+1,n,1); int res2 = process(chars,i,i+1,n,0); int count = Math.max(res1,res2); max = Math.max(count,max); } return max; } public int process(char[] chars , int left,int right,int n,int count){ while(left>=0 && right<n){ if(chars[left] != chars[right]){ break; } count+=2; left--; right++; } return count; } }
//动态规划 int getLongestPalindrome(string A, int n) { // write code here int res=1; vector<vector<bool>> dp(n,vector<bool>(n,false)); //dp[i][j]:从i到j的字符子串是不是回文串 for(int i=0; i<n; i++) { dp[i][i]=true; } for(int j=1; j<n; j++) { for(int i=0; i<j; i++) { if(A[i]!=A[j]) dp[i][j]=false; else { if(j-i+1<=3) //如果长度小于等于3,直接就是回文串 dp[i][j]=true; else //长度大于等于4 dp[i][j]=dp[i+1][j-1]; } if(dp[i][j] && j-i+1>res) //更新最大长度 res = j-i+1; } } return res; //中心扩散 int sublen(string& A, int l, int r) { while(l>=0 && r<A.size() && A[l]==A[r]) { l--; r++; } return r-l-1; } int getLongestPalindrome(string A, int n) { int res=1; for(int i=0; i<n; i++) { int r1 = sublen(A, i, i); int r2 = sublen(A, i, i+1); res = res>r1?res:r1; res = res>r2?res:r2; } return res; }
import java.util.*; public class Solution { public int getLongestPalindrome(String A, int n) { // write code here if(n<2){ return n; } int maxLength=1; int begin=0; char[] chararray=A.toCharArray(); for(int i=0;i<n-1;i++){ for(int j=i+1;j<n;j++){ if(j-i+1>maxLength && validPalindrome(chararray,i,j)){ maxLength=j-i+1; begin=i; } } } return maxLength; } public boolean validPalindrome(char[] chararray,int left,int right){ while(left<right){ if(chararray[left]!=chararray[right]){ return false; } left++; right--; } return true; } }
import java.util.*; //喜极而泣啊!写代码五分钟,调bug2小时 //说下思路: public class Solution{ public int getLongestPalindrome(String A, int n) { char [] strArr = A.toCharArray(); int length=0; // l为左,r为右,当l到r范围的字符串为回文,(两端相等,并依次递归,直到所有相等,则为回文) for (int l=0; l < n; l++) { for (int r = l; r < n; r++) { //设置一个flag,当回文时为1,不回文为-1 int flag=0,r1=r,l1=l; while(l1<=r1) { if(strArr[l1]==strArr[r1]) flag=1; else {flag=-1;break;} l1++; r1--; } if(flag==1)length=Math.max(length,r-l+1); } } return length; } }
import java.util.*; public class Solution { public int getLongestPalindrome(String A, int n) { // write code here int [][] dp = new int [n+1][n+1]; int res = 1; for(int i = 0;i < n;++i) dp[i][i] = 1; for(int i = 0,j = i+1;i < n && j < n;++i,++j){ if(A.charAt(i) == A.charAt(j)){ dp[i][j] = 2; res = 2; } else dp[i][j] = 0; } int dis = 2; while(dis < n){ for(int i = 0,j = i+dis;j < n;++i,++j){ if(A.charAt(i) == A.charAt(j) && dp[i+1][j-1] != 0){ dp[i][j] = 2+dp[i+1][j-1]; res = Math.max(dp[i][j],res); }else dp[i][j] = 0; } ++dis; } return res; } }
export function getLongestPalindrome(A: string, n: number): number { // write code here if(!n) return 0 let res = 1 const dp = [] for(let i = n -1;i>=0;i--){ dp[i] = [] for(let j = i;j<n;j++){ if(j - i == 0) dp[i][j] = true else if(A[i] == A[j]&&j-i == 1) dp[i][j] = true else if(A[i] == A[j] && dp[i+1][j-1]) dp[i][j] = true if( dp[i][j]&& j - i + 1 >res) res = j - i + 1 } } return res }
import java.util.*; public class Solution { public int getLongestPalindrome(String A, int n) { int maxCount = 0; for (int i = 1; i < A.length() ; i++){ int left = i -1; int right = i +1; int count = 1; maxCount = getMaxCount(A, maxCount, left, right, count); left = i -1; right = i; count = 0; maxCount = getMaxCount(A, maxCount, left, right, count); } // write code here return maxCount; } private int getMaxCount(String A, int maxCount, int left, int right, int count) { while (left>= 0 && right <= A.length()-1 && A.charAt(left) == A.charAt(right)){ left--; right++; count+=2; } maxCount = Math.max(count,maxCount); return maxCount; } }
class Solution { public: int getLongestPalindrome(string s, int n) { int res=0;int l,r; for(int i=0;i<n;i++) { l=i-1; r=i+1; while(l>=0&&r<=n-1&&s[l]==s[r]) { res=max(res,r-l+1); l--;r++; } l=i;r=i+1; while(l>=0&&r<=n-1&&s[l]==s[r]) { res=max(res,r-l+1); l--;r++; } } return res; } };//借鉴某位大神的写法写了一遍
class Solution { public: int getLongestPalindrome(string A, int n) { if (n < 2) return n; int max = 1; for (int i = 0; i < n; i++) { for (int j = 1; i-j >= 0 && i+j < n; j++) { if (A[i-j] == A[i+j]) { int t = j*2 + 1; max = t > max ? t : max; } else break; } for (int j = 0; i-j-1 >= 0 && i+j <n; j++) { if (A[i-j-1] == A[i+j]) { int t = j*2 + 2; max = t > max ? t : max; } else break; } } return max; } };
//详情请点击博客链接(链接在最下方) import java.util.*; public class Solution { public int getLongestPalindrome(String A, int n) { // write code here int count=0; //记录每次字符串的长度 int max=0; //记录最大字符串的长度 for(int i=0;i<n;i++){ for(int j=i+1;j<=n;j++){ String s=A.substring(i,j);//通过for截取出所有可能出现的字符串 if(isPalindromic(s)){//进行判断:2步骤 count=s.length(); if(max<count){ //进行判断:3步骤 max=count; } } } } return max; } public static boolean isPalindromic(String s) { int i = 0; int j = s.length() - 1; while (i <= j) { //取出新得到的字符串挨个字符进行比较 if (s.charAt(i) != s.charAt(j)) { return false; } i++; j--; } return true; } } ———————————————— 版权声明:本文为CSDN博主「峰回路转」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_44840148/article/details/105123450
class Solution { public: int getLongestPalindrome(string str, int n) { int max=0; string newstr; for(char c:str){ newstr+="#"; newstr+=c; } newstr+="#"; for(int i=0;i<2*n+1;i++){ for(int len=0;;len++){ if(newstr[i-len]!=newstr[i+len]||i-len<0||i+len>=2*n+1){ break; } if(max<len*2+1){ max=len*2+1; } } } return max/2; } };没用动态规划,从中心找回文,避免考虑奇偶就在每个字符中间及首位加了#使回文串必为奇数,返回的长度除以2就行了,时间复杂度大概O(n^2),主要容易理解
import java.util.*; public class Solution { public int getLongestPalindrome(String A, int n) { // write code here String str=A; int len=str.length(); int[][] dp=new int[len][len]; int ans=1; for(int i=0;i<len;i++){ dp[i][i]=1; if(i<len-1){ if(str.charAt(i)==str.charAt(i+1)){ dp[i][i+1]=1; ans=2; } } } for(int L=3;L<=len;L++){ for(int i=0;i+L-1<len;i++){ int j=i+L-1; if(str.charAt(i)==str.charAt(j) && dp[i+1][j-1]==1){ dp[i][j]=1; ans=L; } } } return ans; } }
//尺取法 //设定left和right,left从0开始,right从left+ans 开始,ans初始化为1. 对整个字符串进行遍历 //首先是 定住left 然后找 right处和left处字符相同,然后判断 这里是不是一个回文 //如果是,可以直接替换,因为每一次的right的起始位置一定是从left加上最大长度ans之后的位置开始 //终止条件也好扣 class Solution { public: int getLongestPalindrome(string A, int n) { int left = 0, right = 0; int ans = 1; for (left = 0; left + ans < n; left++) { for (right = left + ans; right < n; right++) { if (A[right] == A[left]) { if (is_reverse(left, right, A)) { ans = right - left + 1; } } } } return ans; } bool is_reverse(int left, int right, string A) { bool is_ok = true; while (left <= right) { if (A[left] != A[right]) { is_ok = false; break; } left++; right--; } return is_ok; } };
import java.util.*; public class Solution { public int getLongestPalindrome(String A, int n) { // write code here char[] ar = A.toCharArray(); Stack<Integer> stack = new Stack<Integer>(); for(int i = 0; i < ar.length; i++){ for(int j = 0; j < ar.length; j++){ if(ar[i] == ar[j] && i - j <= 2 && i != j){ stack.push(i); } } } int max_len = 0; while(!stack.empty()){ int center = stack.pop(); int tmp1 = 0,tmp2 = 0,len = 0,left_same = 0,right_same = 0; int ii = center-1; while(ii >= 0 && ar[center] == ar[ii]){ left_same++; ii--; } ii = center + 1; while(ii<ar.length && ar[center] == ar[ii]){ right_same++; ii++; } if(left_same == right_same && left_same != 0){ tmp1 = center + 1; tmp2 = center - 1; len++; } else if(left_same - right_same == 1){ tmp1 = center; tmp2 = center-1; } else if(left_same == 0 && center - 2 >= 0 && ar[center] == ar[center - 2]){ tmp1 = center; tmp2 = center - 2; len++; } else continue; while(tmp1 < ar.length && tmp2 >= 0 && ar[tmp1] == ar[tmp2]){ len+=2; tmp1++; tmp2--; } if(max_len < len)max_len = len; } return max_len; } }彩机我写了五十多行终于写出来了,彩机我不讲思路了,肯定想麻烦了
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
string input;
int N;
cin>>input;
//cin>>N;
int dp[101][101];
int result=1;
for(int i=0;i<input.size();i++)
{
dp[i][i] = 1;
if(i==input.size()-1)
continue;
if(input[i]!=input[i+1])
{
dp[i][i+1] = 0;
}else
{
dp[i][i+1]= 2;
result = 2;
}
}
for(int i=3;i<=input.size();i++)
{
for(int j=0;j<input.size();j++)
{
int left = j;
int right = i+j-1;
if(right>input.size()-1)
continue;
if(input[left]!=input[right])
dp[left][right]=0;
else
{
if(dp[left+1][right-1]!=0)
{
dp[left][right] = dp[left+1][right-1]+2;
result = max(result,dp[left][right]);
}
}
}
}
cout<<result<<endl;
return 0;
}
class Solution { public: int getLongestPalindrome(string A, int n) { bool dp[n][n]; memset(dp,false,sizeof(dp)); int Max = 0; for(int d=0;d<n;d++) for(int i=0;i<n-d;i++) { int j = i+d; if(A[i] == A[j]) { if(d==0 || d==1) dp[i][j] = true; else dp[i][j] = dp[i+1][j-1]; if(dp[i][j]) Max = max(Max,d+1); } } return Max; } };