首页 > 试题广场 >

假设我们想估计A和B这两个参数,在开始状态下二者都是未知的,

[单选题]
假设我们想估计A和B这两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止,该算法是(      )的算法思想。
  • 极大似然法
  • 朴素贝叶斯分类器
  • EM算法
  • 贝叶斯决策论
极大似然
        一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。
朴素贝叶斯分类器
        朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素。朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
  EM算法
        EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation-Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题。
        其基本思想是:首先根据己经给出的观测数据,估计出模型参数的值;然后再依据上一步估计出的参数值估计缺失数据的值,再根据估计出的缺失数据加上之前己经观测到的数据重新再对参数值进行估计,然后反复迭代,直至最后收敛,迭代结束。
贝叶斯决策理论方法
统计模型决策中的一个基本方法,其基本思想是:
★已知类条件概率密度参数表达式和先验概率
★利用贝叶斯公式转换成后验概率
★根据后验概率大小进行决策分类


发表于 2021-06-22 10:35:53 回复(1)
EM是一种迭代式的方法,它的基本思想就是:若样本服从的分布参数θ已知,则可以根据已观测到的训练样本推断出隐变量Z的期望值(E步),若Z的值已知则运用最大似然法估计出新的θ值(M步)。重复这个过程直到Z和θ值不再发生变化。

简单来讲:假设我们想估计A和B这两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
发表于 2020-04-27 16:32:14 回复(0)
EM算法了,没毛病
已知样本数据服从K个概率分布,样本具体属于哪个概率分布未知,概率分布参数也未知。
先初始化概率分布的参数,判断各个样本的归属
现在已知样本归属,根据样本数据重新计算参数
重复
发表于 2018-12-21 22:24:14 回复(0)
EM算法解决这个的思路是使用启发式的迭代方法,既然我们无法直接求出模型分布参数,那么我们可以先猜想隐含数据(EM算法的E步),接着基于观察数据和猜测的隐含数据一起来极大化对数似然,求解我们的模型参数(EM算法的M步)。由于我们之前的隐藏数据是猜测的,所以此时得到的模型参数一般还不是我们想要的结果。不过没关系,我们基于当前得到的模型参数,继续猜测隐含数据(EM算法的E步),然后继续极大化对数似然,求解我们的模型参数(EM算法的M步)。以此类推,不断的迭代下去,直到模型分布参数基本无变化,算法收敛,找到合适的模型参数。
故答案是EM算法。
编辑于 2020-03-07 13:57:26 回复(0)
高斯混合模型与K均值算法的相同点是,它们都是可用于聚类的算法;都需要指定K值;都是使用EM算法来求解;都往往只能收敛于局部最优。
发表于 2020-07-28 14:31:16 回复(0)
EM算法的标准计算框架由E步(Expectation-step)和M步(Maximization step)交替组成,算法的收敛性可以确保迭代至少逼近局部极大值 。EM算法是MM算法(Minorize-Maximization algorithm)的特例之一,有多个改进版本,包括使用了贝叶斯推断的EM算法、EM梯度算法、广义EM算法等 
发表于 2020-07-16 19:26:18 回复(0)
EM算法;已知一部分数据,根据数据来估计模型参数,在根据模型参数来估计未知数据(隐含数据),然后将预测数据与原数据一起来故居模型参数,不断反复,直到模型收敛即可。
发表于 2020-07-28 16:38:05 回复(3)