测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 注意:两个城市之间可以有多条道路相通,也就是说 3 3 1 2 1 2 2 1 这种输入也是合法的 当N为0时,输入结束,该用例不被处理。
对每个测试用例,在1行里输出最少还需要建设的道路数目。
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
1 0 2 998
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int N; while (scanner.hasNext() && (N = scanner.nextInt()) != 0) { int M = scanner.nextInt(); UnionFindSet ufs = new UnionFindSet(N, 1000); for (int i = 0; i < M; i++) { ufs.union(scanner.nextInt(), scanner.nextInt()); } int count = -1; for (int i = 1; i <= N; i++) { if (ufs.father[i] == i) { count++; } } System.out.println(count); } } public static class UnionFindSet { private int father[]; private int height[]; public UnionFindSet(int n, int max) { this.father = new int[max]; this.height = new int[max]; for (int i = 1; i <= n; i++) { this.father[i] = i; this.height[i] = 0; } } int find(int x) { if (x != father[x]) { father[x] = find(father[x]); } return father[x]; } void union(int x, int y) { x = find(x); y = find(y); if (x != y) { if (height[x] < height[y]) { father[x] = y; } else if (height[x] > height[y]) { father[y] = x; } else { father[y] = x; height[x]++; } } } } }
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { static int[] parent = new int[1000]; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String s; while ((s = br.readLine()) != null) { if (s.equals("0")) break; String[] ss = s.split(" "); int n = Integer.parseInt(ss[0]);//n 城镇 int m = Integer.parseInt(ss[1]);//m 道路 for (int i = 1; i <= n; i++) { //初始化父节点 parent[i] = -1; } for (int i = 0; i < m; i++) { //依次对每条路进行操作 String[] str = br.readLine().split(" "); int x = Integer.parseInt(str[0]); int y = Integer.parseInt(str[1]); x = FindRoot(x); y = FindRoot(y); if (x != y) { //两个点不属于一个集合,则连起来 parent[x] = y; } } int count = 0; //找出此时有多少根节点,即多少个集合 for (int i = 1; i <= n; i++) { if (parent[i] == -1) count++; } System.out.println(--count); } } public static int FindRoot(int t) { if (parent[t] == -1) return t; else { int r = FindRoot(parent[t]); parent[t] = r; // 路径压缩 return r; } } }
import java.util.Scanner; import java.util.TreeSet; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()){ int townNum = scanner.nextInt(); int pathNum = scanner.nextInt(); UnionFind unionFind = new UnionFind(townNum+1); for (int i = 0; i < pathNum; i++) { int town1 = scanner.nextInt(); int town2 = scanner.nextInt(); unionFind.union(town1,town2); } TreeSet<Integer> set = new TreeSet<>(); for (int i = 1; i <=townNum; i++) { set.add(unionFind.find(i)); } System.out.println(set.size()-1); } } public static class UnionFind { private int[] id; public UnionFind(int N) { id = new int[N]; for(int i = 0; i < N; i++) id[i] = i; } public int find(int p) { return id[p]; } public void union(int p, int q){ int pRoot = find(p); int qRoot = find(q); if(pRoot == qRoot) return; for(int i = 0; i < id.length; i++) if(id[i] == pRoot) id[i] = qRoot; } } }