首页 > 试题广场 >

分组计算练习题

[编程题]分组计算练习题
  • 热度指数:498902 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 256M,其他语言512M
  • 算法知识视频讲解
题目:现在运营想要对每个学校不同性别的用户活跃情况和发帖数量进行分析,请分别计算出每个学校每种性别的用户数、30天内平均活跃天数和平均发帖数量。


用户信息表:user_profile
30天内活跃天数字段(active_days_within_30)
发帖数量字段(question_cnt)
回答数量字段(answer_cnt)
id device_id gender age university gpa active_days_within_30
question_cnt
answer_cnt
1 2138 male 21 北京大学 3.4 7 2 12
2 3214 male
复旦大学 4.0 15 5 25
3 6543 female 20 北京大学 3.2 12 3 30
4 2315 female 23 浙江大学 3.6 5 1 2
5 5432 male 25 山东大学 3.8 20 15 70
6 2131 male 28 山东大学 3.3 15 7 13
7 4321 male 26 复旦大学 3.6 9 6 52
第一行表示:id为1的用户的常用信息为使用的设备id为2138,性别为男,年龄21岁,北京大学,gpa为3.4在过去的30天里面活跃了7天,发帖数量为2,回答数量为12
。。。
最后一行表示:id为7的用户的常用信息为使用的设备id为4321,性别为男,年龄26岁,复旦大学,gpa为3.6在过去的30天里面活跃了9天,发帖数量为6,回答数量为52


你的查询返回结果需要对性别和学校分组,示例如下,结果保留1位小数,1位小数之后的四舍五入,查询出来的结果按照gender、university升序排列
gender university user_num avg_active_day avg_question_cnt
female 北京大学 1 12.0 3.0
female
浙江大学 1 5.0 1.0
male 北京大学 1 7.0 2.0
male
复旦大学 2 12.0 5.5
male 山东大学 2 17.5 11.0

解释:
第一行表示:北京大学的男性用户个数为1,平均活跃天数为7天,平均发帖量为2
。。。
最后一行表示:山东大学的男性用户个数为2,平均活跃天数为17.5天,平均发帖量为11
示例1

输入

drop table if exists user_profile;
CREATE TABLE `user_profile` (
`id` int NOT NULL,
`device_id` int NOT NULL,
`gender` varchar(14) NOT NULL,
`age` int ,
`university` varchar(32) NOT NULL,
`gpa` float,
`active_days_within_30` float,
`question_cnt` float,
`answer_cnt` float
);
INSERT INTO user_profile VALUES(1,2138,'male',21,'北京大学',3.4,7,2,12);
INSERT INTO user_profile VALUES(2,3214,'male',null,'复旦大学',4.0,15,5,25);
INSERT INTO user_profile VALUES(3,6543,'female',20,'北京大学',3.2,12,3,30);
INSERT INTO user_profile VALUES(4,2315,'female',23,'浙江大学',3.6,5,1,2);
INSERT INTO user_profile VALUES(5,5432,'male',25,'山东大学',3.8,20,15,70);
INSERT INTO user_profile VALUES(6,2131,'male',28,'山东大学',3.3,15,7,13);
INSERT INTO user_profile VALUES(7,4321,'male',28,'复旦大学',3.6,9,6,52);

输出

gender|university|user_num|avg_active_day|avg_question_cnt
female|北京大学|1|12.0|3.0
female|浙江大学|1|5.0|1.0
male|北京大学|1|7.0|2.0
male|复旦大学|2|12.0|5.5
male|山东大学|2|17.5|11.0
SELECT 
    gender,
    university,
    count(device_id) as user_num,
    round(avg(active_days_within_30),1) as       avg_active_day,
    round(avg(question_cnt),1)  as avg_question_cnt 
FROM 
    user_profile 
GROUP BY 
    gender,university 
ORDER BY
    gender,university;

发表于 2025-03-05 20:55:25 回复(0)
SELECT 
    gender,
    university,
    COUNT(DISTINCT device_id) AS user_num,
    ROUND(AVG(active_days_within_30), 1) AS avg_active_day,
    ROUND(AVG(question_cnt), 1) AS avg_question_cnt
FROM 
    user_profile
GROUP BY 
    gender, university
ORDER BY 
    gender, university;
这样才对~
发表于 2025-03-03 21:18:39 回复(0)
select
    gender,
    university,
    count(gender) as user_num,
    round(avg(active_days_within_30) , 1) as avg_active_day,
    round(avg(question_cnt) , 1) as avg_question_cnt
from
    user_profile
group by
    university,
    gender
order by gender,university;

发表于 2025-03-03 16:57:16 回复(0)
select 
    gender, university,
    count(device_id) as user_num,
    avg(active_days_within_30) as avg_active_days,
    avg(question_cnt) as avg_question_cnt
from user_profile
group by gender,university
order by gender

这哪错啦???
发表于 2025-02-25 10:43:09 回复(0)
SELECT gender
, university
, COUNT(device_id) user_num
, ROUND(AVG(active_days_within_30),1) avg_active_day
, ROUND(AVG(question_cnt),1) avg_question_cnt
    FROM user_profile
    GROUP BY gender
    ,university
    ORDER BY gender ASC
    , university ASC;
发表于 2025-02-24 18:04:50 回复(0)
select gender, university, count(gender) user_num, avg(active_days_within_30) avg_active_day, avg(question_cnt) avg_questive_cnt
from user_profile
group by university, gender
order by gender
有没有大佬帮忙指正一下啊,输出结果和答案一模一样但是总是说错的,开始以为是排序问题所以加了order但还是不对

发表于 2025-02-16 15:43:20 回复(0)
select
gender
,university
,count(gender) as user_num
,round(avg(active_days_within_30),1) as avg_active_day
,round(avg(question_cnt),1) as avg_question_cnt
from user_profile
group by gender,university
order by gender,university
发表于 2025-02-14 23:05:53 回复(0)
求指点,为什么我这个结果出来和预期输出不一样。我刚开始以为是分组顺序问题,结果换了顺序还是无法通过
SELECT gender,university,COUNT(*)user_num,AVG(active_days_within_30)avg_active_day,
AVG(question_cnt)avg_quesition_cnt
FROM user_profile
GROUP BY university,gender;
预期输出
gender
university
user_num
avg_active_day
avg_question_cnt
female
北京大学
1
17.0
36.0
female
北京师范大学
1
12.0
22.0
female
浙江大学
1
22.0
50.0
male
北京大学
1
3.0
8.0
male
南京大学
1
5.0
7.0
male
复旦大学
1
8.0
18.0
male
山东大学
1
2.0
6.0
male
清华大学
1
10.0
20.0
实际输出
gender
university
user_num
avg_active_day
avg_quesition_cnt
male
北京大学
1
3.0
8.0
male
复旦大学
1
8.0
18.0
female
北京大学
1
17.0
36.0
female
浙江大学
1
22.0
50.0
male
山东大学
1
2.0
6.0
male
南京大学
1
5.0
7.0
male
清华大学
1
10.0
20.0
female
北京师范大学
1
12.0
22.0

发表于 2025-02-10 13:10:56 回复(0)

SELECT
    gender,
    university,
    COUNT(device_id) AS user_num,
    AVG(active_days_within_30) AS avg_active_day,
    AVG(question_CNt) AS avg_question_cnt
FROM
    user_profile
GROUP BY
    gender, university
ORDER BY /*注意排序*/
    gender ASC, university ASC;

发表于 2025-02-09 14:43:47 回复(0)
select gender,university,count(device_id) as user_num,round(avg(active_days_within_30),1) as avg_active_day,round(avg(question_cnt),1) as avg_question_cnt from user_profile group by gender,university order by gender;

发表于 2025-02-06 14:32:58 回复(0)
# 计算出每个学校每种性别的用户数、30天内平均活跃天数和平均发帖数量。

select
    gender,
    university,
    count(*) as user_num,
    round(avg(active_days_within_30), 1) as avg_active_day,
    round(avg(question_cnt), 1) as avg_question_cnt
from user_profile
group by gender, university
order by gender, university
发表于 2025-02-06 10:14:50 回复(0)
select gender,
university,
count(device_id) as user_num,
avg(active_days_within_30) as avg_active_day,
avg(question_cnt) as avg_question_cnt
from user_profile
group by gender,university
看了好几遍,和题解的一样,为什么一直报错呀
发表于 2025-01-28 16:28:02 回复(0)
select gender,university,
count(id) as user_num,
avg(active_days_within_30) as avg_active_day,
avg(question_cnt) as avg_question_cnt
from user_profile group by gender,university order by gender

发表于 2025-01-24 10:20:21 回复(0)
找不到错哪了,求大神解答
发表于 2025-01-14 16:52:36 回复(0)
select 
   gender,university,
   count(device_id) as user_num,
   round(avg(active_days_within_30),1) as avg_active_day,
   round(avg(question_cnt),1) as avg_question_cnt
from user_profile
group by university,gender;
发表于 2025-01-10 15:00:07 回复(2)
SELECT
    gender,
    university,
    COUNT(*) AS user_num,
    ROUND(SUM(active_days_within_30) / COUNT(*), 1) AS avg_active_day,
    ROUND(SUM(question_cnt) / COUNT(*), 1) AS avg_question_cnt
FROM
    user_profile
GROUP BY
    gender,
    university
ORDER BY
    gender,
    university;

发表于 2025-01-02 09:08:39 回复(0)
select gender
,university
,count(device_id) as user_num  
,round(avg(active_days_within_30),1) as avg_active_day
,round(avg(question_cnt),1) as avg_question_cnt
from user_profile
group by gender,university
order by gender,university asc
发表于 2024-12-26 13:08:49 回复(1)

有大神帮我看看哪里错了吗,运行不出来
发表于 2024-12-23 22:01:00 回复(0)
select
    gender,
    university,
    count(gender) as user_num,
    round(avg(active_day_within_30), 1) as avg_active_day,
    round(avg(question_cnt), 1) as avg_question_cnt
from
    user_profile
group by
    gender,
    university
order by
    gender,university
大神们帮忙看看,为啥不对呀
发表于 2024-12-18 13:40:25 回复(0)