小v今年有n门课,每门都有考试,为了拿到奖学金,小v必须让自己的平均成绩至少为avg。每门课由平时成绩和考试成绩组成,满分为r。在考试前,小v他已经知道每门课的平时成绩为ai ,假设付出的时间与获得的分数成正比,若想让这门课的考试成绩多拿一分的话,小v要花bi 的时间复习,不复习的话当然就是0分。同时我们显然可以发现复习得再多也不会拿到超过满分的分数。问小v为了拿到奖学金,至少要花多少时间复习?
输入描述:
第一行三个整数n,r,avg(1 5,1 9,1 6),接下来n行,每行两个整数ai和bi,(0 i 6,1 i 6) 注意:本题含有多组样例输入。
输出描述:
每个用例对应一行输出答案。
示例1
输入
5 10 9
0 5
9 1
8 1
0 1
9 100
3 5 3
2 1
4 100
3 3
说明
示例1有两组测试用例。
对于第2组测试用例,小v的平时成绩的平均成绩为(2+4+3)/3=3分,已经达到拿奖学金的最低要求,所以可以不用复习。
加载中...