数据分析面试 - ML(1-SVM)

简介:
- 支持向量机是一种机器学习算法,主要用于分类和回归问题。
- 基于统计理论的结构风险最小化原则,通过寻找最优超平面将数据集划分成不同的类别,让不同类别之间的边界最大化。
- 核心思想:通过寻找最大间隔超平面将数据分成不同的类,同时用kernel function将数据映射到高维空间,以解决非线性分类问题。

优点:
1. 可以处理高维度数据&非线性分类问题
2. 用不同的kernel function适应不同的问题(线性KF- 线性可分问题;高斯KF-非线性可分问题)
3. 对噪声数据的鲁棒性比较强,可以通过设置软间隔来避免过于依赖噪声数据

缺点:
1. 二分类模型,对于多分类需要进行多次训练
2. 对于参数选择和KF选择敏感,要进行反复实验和调整
3. 不适合处理大规模的数据集,需要进行降维度/使用随机采样的方法
4. 不直接给出概率估计,需要使用间接的方法进行概率估计,eg: Platt缩放

对噪声和缺失值敏感:
1. 噪声:对于噪声数据的鲁棒性强,如果噪声数据太多,会影响模型性能,导致过拟合/欠拟合。为了避免过拟合可以使用软间隔来降低对噪声数据的依赖性。
2. 缺失值:svm需要对整个数据集进行训练,如果存在缺失值,就要对缺失值进行处理,否则回影响模型的性能。
全部评论
哪个公司
点赞 回复 分享
发布于 2023-08-27 11:32 广东

相关推荐

头像
10-13 18:10
已编辑
东南大学 C++
。收拾收拾心情下一家吧————————————————10.12更新上面不知道怎么的,每次在手机上编辑都会只有最后一行才会显示。原本不想写凉经的,太伤感情了,但过了一天想了想,凉经的拿起来好好整理,就像象棋一样,你进步最快的时候不是你赢棋的时候,而是在输棋的时候。那废话不多说,就做个复盘吧。一面:1,经典自我介绍2,项目盘问,没啥好说的,感觉问的不是很多3,八股问的比较奇怪,他会深挖性地问一些,比如,我知道MMU,那你知不知道QMMU(记得是这个,总之就是MMU前面加一个字母)4,知不知道slab内存分配器->这个我清楚5,知不知道排序算法,排序算法一般怎么用6,写一道力扣的,最长回文子串反问:1,工作内容2,工作强度3,关于友商的问题->后面这个问题问HR去了,和中兴有关,数通这个行业和友商相关的不要提,这个行业和别的行业不同,别的行业干同一行的都是竞争关系,数通这个行业的不同企业的关系比较微妙。特别细节的问题我确实不知道,但一面没挂我。接下来是我被挂的二面,先说说我挂在哪里,技术性问题我应该没啥问题,主要是一些解决问题思路上的回答,一方面是这方面我准备的不多,另一方面是这个面试写的是“专业面试二面”,但是感觉问的问题都是一些主管面/综合面才会问的问题,就是不问技术问方法论。我以前形成的思维定式就是专业面会就是会,不会就直说不会,但事实上如果问到方法论性质的问题的话得扯一下皮,不能按照上面这个模式。刚到位置上就看到面试官叹了一口气,有一些不详的预感。我是下午1点45左右面的。1,经典自我介绍2,你是怎么完成这个项目的,分成几个步骤。我大致说了一下。你有没有觉得你的步骤里面缺了一些什么,(这里已经在引导我往他想的那个方向走了),比如你一个人的能力永远是不够的,,,我们平时会有一些组内的会议来沟通我们的所思所想。。。。3,你在项目中遇到的最困难的地方在什么方面4,说一下你知道的TCP/IP协议网络模型中的网络层有关的协议......5,接着4问,你觉得现在的socket有什么样的缺点,有什么样的优化方向?6,中间手撕了一道很简单的快慢指针的问题。大概是在链表的倒数第N个位置插入一个节点。————————————————————————————————————10.13晚更新补充一下一面说的一些奇怪的概念:1,提到了RPC2,提到了fu(第四声)拷贝,我当时说我只知道零拷贝,知道mmap,然后他说mmap是其中的一种方式,然后他问我知不知道DPDK,我说不知道,他说这个是一个高性能的拷贝方式3,MMU这个前面加了一个什么字母我这里没记,别问我了4,后面还提到了LTU,VFIO,孩子真的不会。
走呀走:华子二面可能会有场景题的,是有些开放性的问题了
点赞 评论 收藏
分享
面了100年面试不知...:今年白菜这么多,冬天可以狂吃了
点赞 评论 收藏
分享
评论
3
28
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务