A years plan starts with spring.一年之计在于春。
2025-03-22
在牛客打卡3234天,今天也很努力鸭!
全部评论
?十年
点赞 回复 分享
发布于 03-22 11:07 新加坡

相关推荐

02-28 02:05
四川大学 Java
点赞 评论 收藏
分享
03-21 17:21
算法工程师
挑战:用户增长分析中的虚假注册识别问题背景:- 负责分析电商平台的新用户增长数据- 发现某些时段用户注册量异常激增- 怀疑存在批量虚假注册影响数据真实性- 需要建立有效的识别方法解决方案:1. 数据探索:```sql-- 初步分析注册数据分布SELECT     DATE(register_time) as reg_date,    COUNT(*) as user_cnt,    COUNT(DISTINCT ip_address) as ip_cnt,    COUNT(*)/COUNT(DISTINCT ip_address) as user_per_ipFROM user_registerGROUP BY DATE(register_time)ORDER BY reg_date;-- 检查设备特征SELECT     device_type,    COUNT(*) as cnt,    COUNT(DISTINCT user_id) as user_cntFROM user_registerGROUP BY device_typeORDER BY cnt DESC;```2. 制定识别标准:建立用户可疑度评分机制```pythondef calculate_risk_score(user_data):    score = 0        # 1. 时间维度    if user_data['register_interval'] < 30:  # 注册间隔太短        score += 3            # 2. IP维度    if user_data['ip_user_count'] > 10:  # 同IP注册过多        score += 2            # 3. 设备维度    if user_data['device_id'] == '':  # 设备标识缺失        score += 2            # 4. 行为维度    if user_data['first_action_time'] - user_data['register_time'] < 60:        score += 1  # 注册后行为过快            return score```3. 特征工程:```pythonimport pandas as pddef create_features(df):    features = pd.DataFrame()        # 时间特征    features['hour'] = df['register_time'].dt.hour    features['weekday'] = df['register_time'].dt.weekday        # IP特征    ip_stats = df.groupby('ip_address').agg({        'user_id': 'count',        'device_id': 'nunique'    }).reset_index()    features = features.merge(ip_stats, on='ip_address')        # 设备特征    features['device_type_encoded'] = pd.factorize(df['device_type'])[0]        # 行为特征    features['action_delay'] = (df['first_action_time'] - df['register_time']).dt.total_seconds()        return features```4. 建立监控机制:```pythondef monitor_registration_anomaly(data):    # 计算历史基线    historical_mean = data['daily_registrations'].rolling(window=30).mean()    historical_std = data['daily_registrations'].rolling(window=30).std()        # 设置告警阈值    threshold = historical_mean + 2 * historical_std        # 检测异常    anomalies = data[data['daily_registrations'] > threshold]        return anomalies```5. 可视化分析:```pythonimport seaborn as snsimport matplotlib.pyplot as plt# 时间分布可视化plt.figure(figsize=(12, 6))sns.histplot(data=df, x='register_hour', bins=24)plt.title('Registration Distribution by Hour')# IP地址分布plt.figure(figsize=(10, 6))sns.boxplot(data=df, x='ip_user_count')plt.title('Users per IP Distribution')# 风险评分分布plt.figure(figsize=(10, 6))sns.kdeplot(data=df, x='risk_score')plt.title('Risk Score Distribution')```效果:1. 识别出约15%的可疑注册用户2. 真实用户增长曲线更准确3. 建立了实时监控机制学到的经验:1. 数据分析需要多维度思考2. 重视数据可视化的作用3. 需要平衡准确性和实用性4. 持续迭代优化很重要后续改进:1. 引入机器学习模型提高准确率2. 增加更多维度的特征3. 建立自动化报告机制4. 优化预警阈值设置补充说明一些实用的分析技巧:1. 数据质量检查:```pythondef check_data_quality(df):    # 检查缺失值    missing_report = df.isnull().sum() / len(df) * 100        # 检查异常值    numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns    stats = df[numeric_cols].describe()        # 检查重复值    duplicate_count = df.duplicated().sum()        return {        'missing_rate': missing_report,        'stats': stats,        'duplicates': duplicate_count    }```2. 用户行为分析:```python# 用户行为路径分析def analyze_user_path(df):    user_paths = df.groupby('user_id').agg({        'action_type': lambda x: '->'.join(x),        'action_time': 'count'    })        return user_paths.value_counts().head(10)```#牛客AI配图神器#
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务