EA China面试感受

时间线如下
4.12 一面
4.17 约二面
4.23 二面
5.21 oc
5.23 offer

        总的来说,ea流程算走的很慢的,我以为我泡没了,就先去实习了,然后最近给发offer了,也许是前面的人鸽了到我了,也许是本身走的就慢。实习时间的话就是78月两个月,标准“暑期”实习。
       ea的难度说实话对比国内大厂来说非常非常小,从笔试到2场面试而言,基本上算是闹着玩,我当时都没抱着什么希望,像外企亚马逊笔试做完2个月后感谢信。笔试记得当时是早上,晚起了会,不太在乎,20分钟写完,简单题。
然后面试的话,就两轮技术面,没有hr面。
       技术面的话都是30分钟,一点不加班,题没有写,像一面全是基础八股,什么cpp的vector扩    容呀,操作系统进程跟线程区别呀,tcp和udp的区别,说实话记不清楚了大概就是这种程度的八股。二面的话,给我点印象就是面试官笑嘻嘻的,还是很不错的。然后针对简历问了问,像我写过stl,就重点问问内部原理,包括红黑树迭代器的operator++的具体细节,官方的stl在设计上会存在那些缺点,然后问了我懂redis嘛,没背过没用过,随便乱扯了扯,就跟面试官说清楚不会这个,但是按照自己理解去说了说。
        总结的话,就是ea技术面笔试什么的,全没有准备,包括技术一二面的时候,我已经有2个周没看过相关的东西了,我也没有提前去突击,就直接去面了。这个纯属运气,我也不知道为什么能拿到,有时候人生真的很奇怪,当你努力去拼搏的时候,反而效果很差,今年实习offer的话cpp相关的是一个也没有。虽然这个offer晚到了,但还是感谢ea的认可,让我能去世界级游戏公司体验体验。😂😂
        最后附上一个offer样板。
#EAChina# #晒一晒我的offer#
全部评论
佬,外企是中文面吗
3 回复 分享
发布于 2024-05-24 22:22 广东
能不能让他把apex服务器修一下
2 回复 分享
发布于 2024-05-26 17:04 广东
太羡慕了
1 回复 分享
发布于 2024-05-24 09:42 上海
游戏客户端吗佬
点赞 回复 分享
发布于 2024-05-23 23:30 上海
是都开了吗 game intern 只在牛客看到楼主一个
点赞 回复 分享
发布于 2024-05-24 09:49 浙江
我超 大佬带带😭
点赞 回复 分享
发布于 2024-05-24 11:14 江苏
lz是本科吗😭
点赞 回复 分享
发布于 2024-05-24 11:15 江苏
真羡慕,能够参与到下一个tga年度游戏的制作😍
点赞 回复 分享
发布于 2024-05-24 12:41 陕西
校友,但我26找实习没人鸟
点赞 回复 分享
发布于 2024-06-09 20:57 陕西
我笔试挂了
点赞 回复 分享
发布于 2024-06-28 09:12 陕西

相关推荐

02-14 16:09
浙江大学 C++
投递阿里云等公司10个岗位
点赞 评论 收藏
分享
昨天 09:12
北京科技大学 C++
一、训练范式革新:动态计算图与自适应优化  传统静态计算图难以应对大模型复杂计算流,2023年技术突破集中在:  1. **即时编译(JAX+XLA)**:Google的**JAXformer**框架通过动态分区策略,在TPUv4集群上实现92%的计算资源利用率,较PyTorch静态图提升37%  2. **梯度累积重参数化**:Meta的**GradRewrite**技术利用张量重映射算法,在OPT-175B训练中减少梯度同步次数58%,通信开销下降42%  3. **自适应混合精度**:NVIDIA的**APEX Dynamic**方案实时监控梯度幅值,动态切换FP8/FP16精度模式,在BERT-large训练中节约显存39%  前沿进展包括**符号微分加速器(SDA)**,如Cerebras的CS-3芯片内置微分引擎,在求解Jacobian矩阵时实现100倍于GPU的加速比。MIT提出的**Progressive Token Dropping**策略,通过重要性采样提前丢弃低贡献token,在ViT-22B训练中节省23% FLOPs。   二、分布式训练体系:异构硬件的统一抽象  跨设备训练面临内存一致性难题,最新解决方案涵盖:  - **统一内存地址空间**:AMD的**Unified Memory Fabric**技术突破PCIe瓶颈,在MI300X集群实现1.5TB/s的GPU-GPU直连带宽  - **异步流水线并行**:DeepMind的**PipeDream-2BW**采用双缓冲机制,在128节点集群中流水线气泡率降至4.2%  - **动态负载均衡**:阿里云**ODPS-Mars**系统通过实时性能建模,在混合GPU/CPU集群中提升任务调度效率31%  工业界标杆案例:字节跳动**Volcano Engine**采用**分层参数服务器**架构,支持万亿参数模型训练,通过稀疏梯度聚合算法将通信量压缩至原始值的6.7%。   三、推理引擎设计:编译优化与硬件感知  模型服务面临编译器优化天花板,突破性技术包括:  1. **计算图手术(Graph Surgery)**:TensorRT-9.0引入动态OP融合策略,针对LLaMA-70B实现41%延迟降低  2. **硬件感知量化**:Qualcomm的**AIMET 2.0**工具链通过芯片级指令分析,在Snapdragon 8 Gen3实现INT4量化下98.2%精度保留  3. **即时内核生成**:OpenAI的**Triton 3.0**编译器支持动态模板扩展,在A100上实现FlashAttention-V2的2.7倍加速  创新案例:Groq的**LPU架构**采用确定性执行模型,在推理Llama2-70B时达成250 tokens/sec的单卡吞吐,时延波动小于±1.5%。   四、内存革命:从显存扩展到底层介质创新  突破显存墙的关键技术路径:  - **计算存储融合**:Samsung的**HBM-PIM**芯片在内存单元集成3000个计算核心,矩阵乘加操作能效比提升28倍  - **非易失内存编程模型**:Intel的**Optane DIMM**配合PMDK库,实现模型参数持久化存储,恢复训练时间从小时级降至分钟级  - **梯度压缩传输**:华为的**HiCOOM**协议使用3D-SPHINX编码,在昇腾集群中梯度通信效率提升5.8倍  学术界突破:UC Berkeley的**ZeRO∞-HD**方案通过异构内存分页技术,在单节点支持260B参数训练,显存占用仅31GB。   五、多模态推理加速:跨引擎联合优化  跨模态场景的端到端优化方案:  1. **跨引擎流水线**:NVIDIA的**Picasso**框架统一CUDA与DLA加速器,在Stable Diffusion XL推理中实现23it/s的吞吐  2. **模态感知调度**:微软**Babel**系统通过运行时特征分析,自动分配视觉/语音模态到对应加速单元,延迟降低44%  3. **统一张量表示**:Apache TVM的**Unity IR**支持跨框架张量格式转换,在多模态模型部署中减少序列化开销67%  生物计算突破:DeepMind的**AlphaFold3**采用几何张量网络,在蛋白质-核酸复合体预测中RMSD误差降至0.89Å,推理速度较v2提升3倍。   六、软硬协同新范式:从芯片到算法的垂直整合  2024年技术融合趋势:  - **存算一体架构**:Tesla Dojo 2.0集成1.2亿个SRAM计算单元,支持4D张量原位计算,能效比达102 TFLOPS/W  - **光子矩阵引擎**:Lightelligence的**OptiCore**光子芯片在矩阵乘法任务中实现1.3 POPS/mm²的面积效率  - **可微分硬件**:Tenstorrent的**Grayskull-2**芯片支持反向传播硬件加速,训练ResNet-152速度达A100的2.3倍  学术界新方向:Stanford的**Algorithm-Architecture Co-Design**方法论,在DNA序列预测任务中实现算法精度与硬件效率同步提升80%。  七、技术演进图谱:2025前瞻性技术布局  1. **量子神经网络**:IBM Quantum的**QNN-Hybrid**架构在量子退火机上实现128qubit梯度计算  2. **神经形态计算**:Intel Loihi 3芯片模拟生物神经元动态,在脉冲神经网络训练中能效比达350 TOPS/W  3. **分子级三维集成**:TSMC的3DSoIC技术实现1μm间距芯片堆叠,计算密度突破1000 TOPS/mm³  当前技术竞争已进入全栈深度整合阶段,开发者需构建覆盖算法创新、编译器优化、芯片架构的立体知识体系。建议重点关注**计算-存储-通信三角定律**的平衡设计,这是下一代大模型基础设施的核心突破点。   #大模型#  #模型部署#
点赞 评论 收藏
分享
评论
15
18
分享

创作者周榜

更多
牛客网
牛客企业服务