柠檬微趣 java 笔试凉

柠檬微趣
8.9号发笔试邮件,13号之前自选时间做,2个小时4道题,全部挂0

1. 求和方式
2. 正则表达式
3. 野猪骑士(写出来了不过是O(n^2),全部超时)
4. protocol buffer

除了第三题其他题连思路也没有,最终全部挂零,凉凉

全部评论
没事 这公司起码得a三道题才有面试 我a了两道g了🤣🤣
5 回复 分享
发布于 2023-08-11 12:51 陕西
我后三道题跟你一样,过了第一道链表排序,第二道骗了20%,第三道野猪骑士也是超时,第四道直接放弃,太难了,直接被拷打
3 回复 分享
发布于 2023-08-11 15:09 黑龙江
我七月底就投了,然后笔试4题A了3.4题。一面过(感觉以为挂了,手撕都没撕出来),二面却挂了(二面自我感觉发挥挺好的,有一个问题有点回答得有瑕疵,其他都近乎完美,刚好准备的都问上了,手撕也出来了)。
2 回复 分享
发布于 2023-08-12 16:44 美国
我就一题45%,麻了
2 回复 分享
发布于 2023-08-13 16:34 浙江
大佬,今早刚给我说笔试挂了🤣🤣
2 回复 分享
发布于 2023-09-04 10:29 陕西
我钱三道题和你一样,第三题也是超时,我想考虑读博了
1 回复 分享
发布于 2023-09-01 20:58 黑龙江
佬,我刚刚做实习的笔试,太难了,你的1和3我都遇到了,1直接不会,3的时间复杂度超了。我之前看过些大厂的笔试题,感觉都还行至少有思路,这公司的题目我完全一点思路都没。
点赞 回复 分享
发布于 2024-06-08 13:57 天津
想问一下佬 语言是不是只能Java 然后是ACM模式?
点赞 回复 分享
发布于 02-10 22:35 陕西

相关推荐

一、训练范式革新:动态计算图与自适应优化  传统静态计算图难以应对大模型复杂计算流,2023年技术突破集中在:  1. **即时编译(JAX+XLA)**:Google的**JAXformer**框架通过动态分区策略,在TPUv4集群上实现92%的计算资源利用率,较PyTorch静态图提升37%  2. **梯度累积重参数化**:Meta的**GradRewrite**技术利用张量重映射算法,在OPT-175B训练中减少梯度同步次数58%,通信开销下降42%  3. **自适应混合精度**:NVIDIA的**APEX Dynamic**方案实时监控梯度幅值,动态切换FP8/FP16精度模式,在BERT-large训练中节约显存39%  前沿进展包括**符号微分加速器(SDA)**,如Cerebras的CS-3芯片内置微分引擎,在求解Jacobian矩阵时实现100倍于GPU的加速比。MIT提出的**Progressive Token Dropping**策略,通过重要性采样提前丢弃低贡献token,在ViT-22B训练中节省23% FLOPs。   二、分布式训练体系:异构硬件的统一抽象  跨设备训练面临内存一致性难题,最新解决方案涵盖:  - **统一内存地址空间**:AMD的**Unified Memory Fabric**技术突破PCIe瓶颈,在MI300X集群实现1.5TB/s的GPU-GPU直连带宽  - **异步流水线并行**:DeepMind的**PipeDream-2BW**采用双缓冲机制,在128节点集群中流水线气泡率降至4.2%  - **动态负载均衡**:阿里云**ODPS-Mars**系统通过实时性能建模,在混合GPU/CPU集群中提升任务调度效率31%  工业界标杆案例:字节跳动**Volcano Engine**采用**分层参数服务器**架构,支持万亿参数模型训练,通过稀疏梯度聚合算法将通信量压缩至原始值的6.7%。   三、推理引擎设计:编译优化与硬件感知  模型服务面临编译器优化天花板,突破性技术包括:  1. **计算图手术(Graph Surgery)**:TensorRT-9.0引入动态OP融合策略,针对LLaMA-70B实现41%延迟降低  2. **硬件感知量化**:Qualcomm的**AIMET 2.0**工具链通过芯片级指令分析,在Snapdragon 8 Gen3实现INT4量化下98.2%精度保留  3. **即时内核生成**:OpenAI的**Triton 3.0**编译器支持动态模板扩展,在A100上实现FlashAttention-V2的2.7倍加速  创新案例:Groq的**LPU架构**采用确定性执行模型,在推理Llama2-70B时达成250 tokens/sec的单卡吞吐,时延波动小于±1.5%。   四、内存革命:从显存扩展到底层介质创新  突破显存墙的关键技术路径:  - **计算存储融合**:Samsung的**HBM-PIM**芯片在内存单元集成3000个计算核心,矩阵乘加操作能效比提升28倍  - **非易失内存编程模型**:Intel的**Optane DIMM**配合PMDK库,实现模型参数持久化存储,恢复训练时间从小时级降至分钟级  - **梯度压缩传输**:华为的**HiCOOM**协议使用3D-SPHINX编码,在昇腾集群中梯度通信效率提升5.8倍  学术界突破:UC Berkeley的**ZeRO∞-HD**方案通过异构内存分页技术,在单节点支持260B参数训练,显存占用仅31GB。   五、多模态推理加速:跨引擎联合优化  跨模态场景的端到端优化方案:  1. **跨引擎流水线**:NVIDIA的**Picasso**框架统一CUDA与DLA加速器,在Stable Diffusion XL推理中实现23it/s的吞吐  2. **模态感知调度**:微软**Babel**系统通过运行时特征分析,自动分配视觉/语音模态到对应加速单元,延迟降低44%  3. **统一张量表示**:Apache TVM的**Unity IR**支持跨框架张量格式转换,在多模态模型部署中减少序列化开销67%  生物计算突破:DeepMind的**AlphaFold3**采用几何张量网络,在蛋白质-核酸复合体预测中RMSD误差降至0.89Å,推理速度较v2提升3倍。   六、软硬协同新范式:从芯片到算法的垂直整合  2024年技术融合趋势:  - **存算一体架构**:Tesla Dojo 2.0集成1.2亿个SRAM计算单元,支持4D张量原位计算,能效比达102 TFLOPS/W  - **光子矩阵引擎**:Lightelligence的**OptiCore**光子芯片在矩阵乘法任务中实现1.3 POPS/mm²的面积效率  - **可微分硬件**:Tenstorrent的**Grayskull-2**芯片支持反向传播硬件加速,训练ResNet-152速度达A100的2.3倍  学术界新方向:Stanford的**Algorithm-Architecture Co-Design**方法论,在DNA序列预测任务中实现算法精度与硬件效率同步提升80%。  七、技术演进图谱:2025前瞻性技术布局  1. **量子神经网络**:IBM Quantum的**QNN-Hybrid**架构在量子退火机上实现128qubit梯度计算  2. **神经形态计算**:Intel Loihi 3芯片模拟生物神经元动态,在脉冲神经网络训练中能效比达350 TOPS/W  3. **分子级三维集成**:TSMC的3DSoIC技术实现1μm间距芯片堆叠,计算密度突破1000 TOPS/mm³  当前技术竞争已进入全栈深度整合阶段,开发者需构建覆盖算法创新、编译器优化、芯片架构的立体知识体系。建议重点关注**计算-存储-通信三角定律**的平衡设计,这是下一代大模型基础设施的核心突破点。   #大模型#  #模型部署#
点赞 评论 收藏
分享
评论
3
11
分享

创作者周榜

更多
牛客网
牛客企业服务