1. HashPartitioner 是默认的分区器,也可以用别的, 比如TotalOrderPartitioner, 也可以自定义开发。 第一个问题, 先回答为什么要分区 就是数据shuffle过程中的一种打散策略。 Hash散列化是最容易想到的。 2. 在MR当中会用到多次排序过程 特别是map输出到内存再溢写到磁盘时会产生大量的临时文件,这些小文件是不能直接交给Reducer处理的,而要进行一个合并的过程, 这个过程是带着map-key进行操作的 所以要用到归并排序。 在环形缓冲的内存区 使用快排, 原因我还没想到。 (https://blog.csdn.net/u010737756/article/details/114198358 ) 3. 先定义和回顾数据倾斜的概念, 然后再思考join这个过程的实现 (reduce把相同key分组做笛卡尔积) 如果大表小表的差异巨大, 表现为小表的数据量比较少但key却比较集中,导致分发到某一个或几个reduce上的数据比其他reduce多很多,易造成数据倾斜。 常常会采用mapjoin 优化这类问题

相关推荐

预计下个星期就能开奖吧,哪位老哥来给个准信
华孝子爱信等:对接人上周说的是这周
投递华为等公司10个岗位 >
点赞 评论 收藏
分享
10-09 00:50
已编辑
长江大学 算法工程师
不期而遇的夏天:1.同学你面试评价不错,概率很大,请耐心等待;2.你的排名比较靠前,不要担心,耐心等待;3.问题不大,正在审批,不要着急签其他公司,等等我们!4.预计9月中下旬,安心过节;5.下周会有结果,请耐心等待下;6.可能国庆节前后,一有结果我马上通知你;7.预计10月中旬,再坚持一下;8.正在走流程,就这两天了;9.同学,结果我也不知道,你如果查到了也告诉我一声;10.同学你出线不明朗,建议签其他公司保底!11.同学你找了哪些公司,我也在找工作。
点赞 评论 收藏
分享
牛客网
牛客企业服务