// 第一题
public class solution {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt();
for(int i = 0; i < t; i++){
int n = scanner.nextInt();
int k = scanner.nextInt();
int sum = 0;
for(int j = 0; j < n; j++){
sum += scanner.nextInt();
}
if(sum <= n * k){
System.out.println("YES");
}else {
System.out.println("NO");
}
}
}
}
// 第二题
public static void main(String[] args) {
// 不需要dp, 由中心往两边扩散。
// 直接遍历长度为2的数组,如果其最大值不等于最小值则进入下一个
// 或许可以在输入时确定当前前缀的后缀的0极差长度与值
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt();
for (int i = 0; i < t; i++) {
int n = scanner.nextInt();
int[] a = new int[2];
// l存储当前前缀的后缀的最大极差长度
int l = 1;
int maxL = 1;
for (int j = 0; j < n; j++) {
a[j % 2] = scanner.nextInt();
if(j>0 && a[j % 2] == a[(j-1) % 2]) {
l++;
if(l > maxL) maxL = l;
}
else l = 1;
}
System.out.println(n-maxL);
}
}
// 第三题
public class solution3 {
public static int n;
public static int x;
public static int[] y;
public static int[] m;
public static int[][] a;
public static int[][] b;
public static double min = Double.MAX_VALUE;
public static void main(String[] args) {
// 关键在于n个图形间最小路径的构建
// 空间复杂度较小,可以考虑回溯吗?
// 最大时间复杂度约为7的7次方
// 可以回溯
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
x = scanner.nextInt();
y = new int[n];
m = new int[n];
// n个图形,每个图形有m[i]个点,a是第一个值,b是第二个值
a = new int[n][];
b = new int[n][];
for(int i = 0; i < n; i++){
y[i] = scanner.nextInt();
}
for(int i = 0; i < n; i++){
m[i] = scanner.nextInt();
a[i] = new int[m[i]];
b[i] = new int[m[i]];
for(int j = 0; j < m[i]; j++){
a[i][j] = scanner.nextInt();
b[i][j] = scanner.nextInt();
}
}
double time =0;
for(int i = 0; i < n; i++){
for(int j = 0; j < m[i]; j++){
back(-1, 0, 0, 0);
}
}
// 得到各节点之间最小距离,计算最小时间
time += min/x;
// 接下来计算各图形内部移动时间
double sumdis = 0;
double time_this = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < m[i]-1; j++){
sumdis += calDis(i, j, i, j + 1);
}
sumdis += calDis(i, 0, i, m[i]-1);
time_this = sumdis / y[i];
time += time_this;
}
System.out.println(time);
}
// 第i个图形, 中间距离, 上一个节点是第几个,头节点是第几个
public static void back(int i, double mid, int last_node, int head_node){
if(i > n){
// 加上其与0的距离,记录最小路径
mid += calDis_0(i-1, last_node);
if(mid<min) min = mid;
return;
}
for(int j = 0; j < m[i]; j++){
if(i == 0){
back(i+1, mid+calDis_0(i, j), j, j);
}else {
back(i+1, mid + calDis(i-1, last_node, i, j), j, head_node);
}
}
}
public static double calDis(int i, int j, int l, int k){
return Math.pow((Math.pow((a[i][j] - a[l][k]), 2) + Math.pow((b[i][j] - b[l][k]), 2)), 0.5);
}
public static double calDis_0(int i, int j){
return Math.pow((Math.pow((a[i][j]), 2) + Math.pow((b[i][j]), 2)), 0.5);
}
}