题解 | #最长公共子序列(二)#
最长公共子序列(二)
https://www.nowcoder.com/practice/6d29638c85bb4ffd80c020fe244baf11
class Solution:
def LCS(self, s1: str, s2: str) -> str:
m, n = len(s1), len(s2)
# 创建一个二维数组来存储最长公共子序列的长度
dp = [[0] * (n + 1) for _ in range(m + 1)]
# 填充dp数组
for i in range(1, m + 1):
for j in range(1, n + 1):
if s1[i - 1] == s2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
# 如果最长公共子序列的长度为0,则返回"-1"
if dp[m][n] == 0:
return "-1"
# 根据dp数组构造最长公共子序列
lcs = ""
i, j = m, n
while i > 0 and j > 0:
if s1[i - 1] == s2[j - 1]:
lcs = s1[i - 1] + lcs
i -= 1
j -= 1
elif dp[i - 1][j] > dp[i][j - 1]:
i -= 1
else:
j -= 1
return lcs
