题解 | #最长公共子序列(二)#
最长公共子序列(二)
https://www.nowcoder.com/practice/6d29638c85bb4ffd80c020fe244baf11
class Solution: def LCS(self, s1: str, s2: str) -> str: m, n = len(s1), len(s2) # 创建一个二维数组来存储最长公共子序列的长度 dp = [[0] * (n + 1) for _ in range(m + 1)] # 填充dp数组 for i in range(1, m + 1): for j in range(1, n + 1): if s1[i - 1] == s2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) # 如果最长公共子序列的长度为0,则返回"-1" if dp[m][n] == 0: return "-1" # 根据dp数组构造最长公共子序列 lcs = "" i, j = m, n while i > 0 and j > 0: if s1[i - 1] == s2[j - 1]: lcs = s1[i - 1] + lcs i -= 1 j -= 1 elif dp[i - 1][j] > dp[i][j - 1]: i -= 1 else: j -= 1 return lcs