最全Linux驱动开发八股文(九)
你好,我是拉依达。
这是我的Linux驱动开发八股文详细解析系列。
本系列最开始是我在csdn上更新的文章,目前已经是csdn搜索“linux驱动”综合推荐第一名,累计阅读次数4w次。
全文总字数近8w字,是目前全网最全面,最清晰的入门linux驱动学习资料。
现重新对内容进行整理,希望可以帮助到更多学习嵌入式的同学。
【下面是拉依达推荐学习相关专栏:】
一、Linux驱动学习专栏:拉依达的Linux驱动八股文 - 牛客网
二、Linux应用学习专栏:拉依达的Linux应用八股文 - 牛客网
【我的嵌入式学习和校招经验】 拉依达的嵌入式学习和秋招经验-CSDN博客
嵌入式学习规划/就业经验指导,可私信咨询
———————————————————————————————————————————————————
十、内核定时器
10.1 内核时间管理
内核必须管理系统的运行时间以及当前的日期和时间。
硬件为内核提供了一个系统定时器用以计算流逝的时间, 系统定时器以某种频率自行触发时钟中断,该频率可以通过编程预定, 称节拍率。
当时钟中断发生时, 内核就通过一种特殊中断处理程序对其进行处理。 内核知道连续两次时钟中断的间隔时间。 这个间隔时间称为节拍(tick) 。内核就是靠这种已知的时钟中断来计算墙上时间和系统运行时间。
节拍率
系统定时器频率是通过静态预处理定义的(HZ), 在系统启动时按照 Hz 对硬件进行设置。一般 ARM 体系结构的节拍率多数都等于 100。
在编译 Linux 内核的时候可以通过图形化界面设置系统节拍率, 按照如下路径打开配置界面: -> Kernel Features -> Timer frequency ( [=y])
Linux 内核会使用 CONFIG_HZ 来设置自己的系统时钟。
# undef HZ
# define HZ CONFIG_HZ
# define USER_HZ 100
# define CLOCKS_PER_SEC (USER_HZ)
宏 HZ 就是 CONFIG_HZ,HZ=100,后面编写 Linux驱动的时候会常常用到 HZ,因为 HZ 表示一秒的节拍数,也就是频率。
- 高节拍率:优点
- 提高系统时间精度,如果采用 100Hz 的节拍率,时间精度就是 10ms,采用1000Hz 的话时间精度就是 1ms。能够以更高的精度运行,时间测量也更加准确。
- 高节拍率:缺点
- 高节拍率会导致中断的产生更加频繁,频繁的中断会加剧系统的负担, 1000Hz 和 100Hz的系统节拍率相比,系统要花费 10 倍的精力去处理中断。中断服务函数占用处理器的时间增加,需要根据实际情况,选择合适的系统节拍率。
jiffies
全局变量 jiffies 用来记录自系统启动以来产生的节拍的总数。 启动时, 内核将该变量初始化为 0, 每次时钟中断处理程序都会增加该变量的值。
因为一秒内时钟中断的次数等于 Hz, 所以 jiffes 一秒内增加的值为 Hz, 系统运行时间以秒为单位计算, 就等于time = jiffes/Hz( jiffes = seconds*HZ)
当 jiffies 变量的值超过它的最大存放范围后就会发生溢出, 对于 32 位无符号长整型, 最大取值为 2^32-1,在溢出前, 定时器节拍计数最大为 4294967295, 如果节拍数达到了最大值后还要继续增加的话, 它的值会回绕到 0。
-
如果 unkown 超过 known 的话, time_after 函数返回真, 否则返回假。
-
如果 unkown 没有超过 known的话 time_before 函数返回真, 否则返回假。
-
time_after_eq 函数在time_after上,多判断等于这个条件, time_before_eq 也类似
unsigned long timeout;
timeout = jiffies + (2 * HZ); /* 超时的时间点 */
....
/* 判断有没有超时 */
if(time_before(jiffies, timeout))
{
/* 超时未发生 */
}
else
{
/* 超时发生 */
}
为了方便开发, Linux 内核提供了几个 jiffies 和 ms、 us、 ns 之间的转换函数
-
定时 10ms jiffies +msecs_to_jiffies(10)
-
定时 10us jiffies +usecs_to_jiffies(10)
10.2 内核定时器
Linux 内核定时器采用系统时钟来实现,只需要提供超时时间(定时值)和定时处理函数即可。、
内核定时器并不是周期性运行的,超时以后就会自动关闭,因此如果想要实现周期性定时,那么就需要在定时处理函数中重新开启定时器。
Linux 内核使用 timer_list 结构体表示内核定时器
struct timer_list
{
struct list_head entry;
unsigned long expires; /* 定时器超时时间, 单位是节拍数 */
struct tvec_base *base;
void (*function)(unsigned long); /* 定时处理函数指针 */
unsigned long data; /* 要传递给 function 函数的参数 */
int slack;
};
例 驱动层
......
#define CLOSE_CMD (_IO(0XEF, 0x1)) /* 关闭定时器 */
#define OPEN_CMD (_IO(0XEF, 0x2)) /* 打开定时器 */
#define SETPERIOD_CMD (_IO(0XEF, 0x3)) /* 设置定时器周期命令 */
......
/* timer设备结构体 */
struct timer_dev{
......
int timeperiod; /* 定时周期,单位为ms */
struct timer_list timer;/* 定义一个定时器*/
spinlock_t lock; /* 定义自旋锁 */
};
struct timer_dev timerdev; /* timer设备 */
static int timer_open(struct inode *inode, struct file *filp)
{
......
timerdev.timeperiod = 1000; /* 默认周期为1s */
ret = led_init(); /* 初始化LED IO */
if (ret < 0) {
return ret;
}
return 0;
}
//ioctl函数,和应用层ioctl对应,和open,close类似
static long timer_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct timer_dev *dev = (struct timer_dev *)filp->private_data;
int timerperiod;
unsigned long flags;
switch (cmd) {
case CLOSE_CMD: /* 关闭定时器 */
del_timer_sync(&dev->timer);
break;
case OPEN_CMD: /* 打开定时器 */
spin_lock_irqsave(&dev->lock, flags);
timerperiod = dev->timeperiod;
spin_unlock_irqrestore(&dev->lock, flags);
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(timerperiod));
break;
case SETPERIOD_CMD: /* 设置定时器周期 */
spin_lock_irqsave(&dev->lock, flags);
dev->timeperiod = arg;
spin_unlock_irqrestore(&dev->lock, flags);
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(arg));
break;
default:
break;
}
return 0;
}
/* 设备操作函数 */
static struct file_operations timer_fops = {
.owner = THIS_MODULE,
.open = timer_open,
.unlocked_ioctl = timer_unlocked_ioctl,
};
/* 定时器回调函数 */
void timer_function(unsigned long arg)
{
struct timer_dev *dev = (struct timer_dev *)arg;
static int sta = 1;
int timerperiod;
unsigned long flags;
sta = !sta; /* 每次都取反,实现LED灯反转 */
gpio_set_value(dev->led_gpio, sta);
/* 重启定时器 */
spin_lock_irqsave(&dev->lock, flags);
timerperiod = dev->timeperiod;
spin_unlock_irqrestore(&dev->lock, flags);
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->timeperiod));
}
/*
* @description : 驱动入口函数
* @param : 无
* @return : 无
*/
static int __init timer_init(void)
{
......
/* 6、初始化timer,设置定时器处理函数,还未设置周期,所有不会激活定时器 */
init_timer(&timerdev.timer);
timerdev.timer.function = timer_function;
timerdev.timer.data = (unsigned long)&timerdev;
return 0;
}
static void __exit timer_exit(void)
{
gpio_set_value(timerdev.led_gpio, 1); /* 卸载驱动的时候关闭LED */
del_timer_sync(&timerdev.timer); /* 删除timer */
#if 0
del_timer(&timerdev.tiemr);
#endif
......
}
例 应用层
/* 命令值 */
#define CLOSE_CMD (_IO(0XEF, 0x1)) /* 关闭定时器 */
#define OPEN_CMD (_IO(0XEF, 0x2)) /* 打开定时器 */
#define SETPERIOD_CMD (_IO(0XEF, 0x3)) /* 设置定时器周期命令 */
int main(int argc, char *argv[])
{
int fd, ret;
char *filename;
unsigned int cmd;
unsigned int arg;
unsigned char str[100];
if (argc != 2) {
printf("Error Usage!\r\n");
return -1;
}
filename = argv[1];
fd = open(filename, O_RDWR);
if (fd < 0) {
printf("Can't open file %s\r\n", filename);
return -1;
}
while (1) {
printf("Input CMD:");
ret = scanf("%d", &cmd);
if (ret != 1) { /* 参数输入错误 */
gets(str); /* 防止卡死 */
}
if(cmd == 1) /* 关闭LED灯 */
cmd = CLOSE_CMD;
else if(cmd == 2) /* 打开LED灯 */
cmd = OPEN_CMD;
else if(cmd == 3) {
cmd = SETPERIOD_CMD; /* 设置周期值 */
printf("Input Timer Period:");
ret = scanf("%d", &arg);
if (ret != 1) { /* 参数输入错误 */
gets(str); /* 防止卡死 */
}
}
ioctl(fd, cmd, arg); /* 控制定时器的打开和关闭 */
}
close(fd);
}
#嵌入式##校招##八股文##Linux##linux驱动#你好,我是拉依达。 这是我的Linux驱动开发八股文详细解析系列。 本系列最开始是我在csdn上更新的文章,目前已经是csdn搜索“linux驱动”综合推荐第一名,累计阅读次数4w次。 全文总字数近8w字,是目前全网最全面,最清晰的入门linux驱动学习资料。 现在我重新对内容进行整理,已专栏的形式发布在牛客上,希望可以帮助到更多学习嵌入式的同学。