大数据工程师面试题 - Spark 调优(八)
我是大数据欧老师,曾在互联网某大厂任大数据负责人,从业大数据领域近 10 年,全网粉丝 5000+,从很多候选人的面试和咨询中复盘了大数据工程师的面试全流程,如果你有求职大数据工程师的计划,欢迎找我聊一聊!
数据倾斜的解决方案
解决方案五:将reduce join转为map join
- 方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。
- 方案实现思路:不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。
- 方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示。
方案优缺点
- 方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。
- 方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。
// 首先将数据量比较小的RDD的数据,collect到Driver中来。 List<Tuple2<Long, Row>> rdd1Data = rdd1.collect() // 然后使用Spark的广播功能,将小RDD的数据转换成广播变量,这样每个Executor就只有一份RDD的数据。 // 可以尽可能节省内存空间,并且减少网络传输性能开销。 final Broadcast<List<Tuple2<Long, Row>>> rdd1DataBroadcast = sc.broadcast(rdd1Data); // 对另外一个RDD执行map类操作,而不再是join类操作。 JavaPairRDD<String, Tuple2<String, Row>> joinedRdd = rdd2.mapToPair( new PairFunction<Tuple2<Long,String>, String, Tuple2<String, Row>>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Tuple2<String, Row>> call(Tuple2<Long, String> tuple) throws Exception { // 在算子函数中,通过广播变量,获取到本地Executor中的rdd1数据。 List<Tuple2<Long, Row>> rdd1Data = rdd1DataBroadcast.value(); // 可以将rdd1的数据转换为一个Map,便于后面进行join操作。 Map<Long, Row> rdd1DataMap = new HashMap<Long, Row>(); for(Tuple2<Long, Row> data : rdd1Data) { rdd1DataMap.put(data._1, data._2); } // 获取当前RDD数据的key以及value。 String key = tuple._1; String value = tuple._2; // 从rdd1数据Map中,根据key获取到可以join到的数据。 Row rdd1Value = rdd1DataMap.get(key); return new Tuple2<String, String>(key, new Tuple2<String, Row>(value, rdd1Value)); } }); // 这里得提示一下。 // 上面的做法,仅仅适用于rdd1中的key没有重复,全部是唯一的场景。 // 如果rdd1中有多个相同的key,那么就得用flatMap类的操作,在进行join的时候不能用map,而是得遍历rdd1所有数据进行join。 // rdd2中每条数据都可能会返回多条join后的数据。
解决方案六:采样倾斜key并分拆join操作
- 方案适用场景:两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。
- 方案实现思路: * 对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。 * 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。 * 接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。 * 再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。 * 而另外两个普通的RDD就照常join即可。 * 最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。
- 方案实现原理:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。具体原理见下图。
方案优缺点
- 方案优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。
- 方案缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。
// 首先从包含了少数几个导致数据倾斜key的rdd1中,采样10%的样本数据。 JavaPairRDD<Long, String> sampledRDD = rdd1.sample(false, 0.1); // 对样本数据RDD统计出每个key的出现次数,并按出现次数降序排序。 // 对降序排序后的数据,取出top 1或者top 100的数据,也就是key最多的前n个数据。 // 具体取出多少个数据量最多的key,由大家自己决定,我们这里就取1个作为示范。 JavaPairRDD<Long, Long> mappedSampledRDD = sampledRDD.mapToPair( new PairFunction<Tuple2<Long,String>, Long, Long>() { private static final long serialVersionUID = 1L; @Override public Tuple2<Long, Long> call(Tuple2<Long, String> tuple) throws Exception { return new Tuple2<Long, Long>(tuple._1, 1L); } }); JavaPairRDD<Long, Long> countedSampledRDD = mappedSampledRDD.reduceByKey( new Function2<Long, Long, Long>() { private static final long serialVersionUID = 1L; @Override public Long call(Long v1, Long v2) throws Exception { return v1 + v2; } }); JavaPairRDD<Long, Long> reversedSampledRDD = countedSampledRDD.mapToPair( new PairFunction<Tuple2<Long,Long>, Long, Long>() { private static final long serialVersionUID = 1L; @Override public Tuple2<Long, Long> call(Tuple2<Long, Long> tuple) throws Exception { return new Tuple2<Long, Long>(tuple._2, tuple._1); } }); final Long skewedUserid = reversedSampledRDD.sortByKey(false).take(1).get(0)._2; // 从rdd1中分拆出导致数据倾斜的key,形成独立的RDD。 JavaPairRDD<Long, String> skewedRDD = rdd1.filter( new Function<Tuple2<Long,String>, Boolean>() { private static final long serialVersionUID = 1L; @Override public Boolean call(Tuple2<Long, String> tuple) throws Exception { return tuple._1.equals(skewedUserid); } }); // 从rdd1中分拆出不导致数据倾斜的普通key,形成独立的RDD。 JavaPairRDD<Long, String> commonRDD = rdd1.filter( new Function<Tuple2<Long,String>, Boolean>() { private static final long serialVersionUID = 1L; @Override public Boolean call(Tuple2<Long, String> tuple) throws Exception { return !tuple._1.equals(skewedUserid); } }); // rdd2,就是那个所有key的分布相对较为均匀的rdd。 // 这里将rdd2中,前面获取到的key对应的数据,过滤出来,分拆成单独的rdd,并对rdd中的数据使用flatMap算子都扩容100倍。 // 对扩容的每条数据,都打上0~100的前缀。 JavaPairRDD<String, Row> skewedRdd2 = rdd2.filter( new Function<Tuple2<Long,Row>, Boolean>() { private static final long serialVersionUID = 1L; @Override public Boolean call(Tuple2<Long, Row> tuple) throws Exception { return tuple._1.equals(skewedUserid); } }).flatMapToPair(new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() { private static final long serialVersionUID = 1L; @Override public Iterable<Tuple2<String, Row>> call( Tuple2<Long, Row> tuple) throws Exception { Random random = new Random(); List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>(); for(int i = 0; i < 100; i++) { list.add(new Tuple2<String, Row>(i + "_" + tuple._1, tuple._2)); } return list; } }); // 将rdd1中分拆出来的导致倾斜的key的独立rdd,每条数据都打上100以内的随机前缀。 // 然后将这个rdd1中分拆出来的独立rdd,与上面rdd2中分拆出来的独立rdd,进行join。 JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD1 = skewedRDD.mapToPair( new PairFunction<Tuple2<Long,String>, String, String>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, String> call(Tuple2<Long, String> tuple) throws Exception { Random random = new Random(); int prefix = random.nextInt(100); return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2); } }) .join(skewedUserid2infoRDD) .mapToPair(new PairFunction<Tuple2<String,Tuple2<String,Row>>, Long, Tuple2<String, Row>>() { private static final long serialVersionUID = 1L; @Override public Tuple2<Long, Tuple2<String, Row>> call( Tuple2<String, Tuple2<String, Row>> tuple) throws Exception { long key = Long.valueOf(tuple._1.split("_")[1]); return new Tuple2<Long, Tuple2<String, Row>>(key, tuple._2); } }); // 将rdd1中分拆出来的包含普通key的独立rdd,直接与rdd2进行join。 JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD2 = commonRDD.join(rdd2); // 将倾斜key join后的结果与普通key join后的结果,uinon起来。 // 就是最终的join结果。 JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD = joinedRDD1.union(joinedRDD2);
解决方案七:使用随机前缀和扩容RDD进行join
- 方案适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。
- 方案实现思路: * 该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。 * 然后将该RDD的每条数据都打上一个n以内的随机前缀。 * 同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。 * 最后将两个处理后的RDD进行join即可。
- 方案实现原理:将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。
方案优缺点
- 方案优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。
- 方案缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。
- 方案实践经验:曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。
// 首先将其中一个key分布相对较为均匀的RDD膨胀100倍。 JavaPairRDD<String, Row> expandedRDD = rdd1.flatMapToPair( new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() { private static final long serialVersionUID = 1L; @Override public Iterable<Tuple2<String, Row>> call(Tuple2<Long, Row> tuple) throws Exception { List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>(); for(int i = 0; i < 100; i++) { list.add(new Tuple2<String, Row>(0 + "_" + tuple._1, tuple._2)); } return list; } }); // 其次,将另一个有数据倾斜key的RDD,每条数据都打上100以内的随机前缀。 JavaPairRDD<String, String> mappedRDD = rdd2.mapToPair( new PairFunction<Tuple2<Long,String>, String, String>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, String> call(Tuple2<Long, String> tuple) throws Exception { Random random = new Random(); int prefix = random.nextInt(100); return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2); } }); // 将两个处理后的RDD进行join即可。 JavaPairRDD<String, Tuple2<String, Row>> joinedRDD = mappedRDD.join(expandedRDD);#大数据##大数据工程师##大数据知识体系##大数据面试##大数据面经#
大数据欧老师 - 面试真题分享 文章被收录于专栏
解决职场真实面试问题,分享同学真实成功案例,欢迎订阅关注!