基于Aidlux平台的工业视觉少样本缺陷检测
工业视觉缺陷检测的工作流程
常用异常检测算法
面临的挑战及发展
图像分割的数据标注
数据标注准确的重要性:
1.训练模型的基础
2.提高模型性能
3.降低误判和误诊分险
4.减少资源浪费
自动标注SAM的使用
模型切换
模型部署
# -*- coding: UTF-8 -*- import aidlite_gpu import cv2 import os import time import numpy as np from PIL import Image import matplotlib.pyplot as plt def mask_to_image(mask: np.ndarray): if mask.ndim == 2: return Image.fromarray((mask * 255).astype(np.uint8)) elif mask.ndim == 3: return Image.fromarray((np.argmax(mask, axis=0) * 255 / mask.shape[0]).astype(np.uint8)) def aidlux_tflite_infer(model_path, img_path, save_path): # step1: 初始化aidlite类并创建aidlite对象 aidlite = aidlite_gpu.aidlite() print('model initial success!!') # step2: 加载模型 inp_shape = [256*256*1*4] out_shape = [256*256*2*4] value = aidlite.ANNModel(model_path, inp_shape, out_shape, 4, 0) # step3: 传入模型输入数据 img = cv2.imread(img_path, 0) img = cv2.resize(img, (256, 256)) img = img[np.newaxis, ...] img = img / 255.0 img = np.expand_dims(img, axis=0) img = img.astype(dtype=np.float32) print("image shape is ", img.shape) aidlite.setInput_Float32(img) # step4: 执行推理 start = time.time() aidlite.invoke() end = time.time() print("infer time(ms):{0}", 1000 * (end - start)) # step5: 获取输出 pred = aidlite.getOutput_Float32(0) # step6: 后处理 pred = np.array(pred) pred = np.reshape(pred,(2,256,256)) mask_img = mask_to_image(pred) mask_img.save(save_path) # mask_img = np.array(mask_img) # cv2.imshow('mask_img', mask_img) # cv2.waitKey(0) # cv2.destroyAllWindows() if __name__ == '__main__': model_path = "/home/dataset2aidlux/unetmodel_fp32.tflite" img_path = "/home/dataset2aidlux/test_imgs/0597.PNG" save_path = '/home/dataset2aidlux/test_imgs/result_0597.png' aidlux_tflite_infer(model_path, img_path, save_path)
效果视频:
基于Aidlux的语义分割模型转换:https://www.bilibili.com/video/BV1K64y1j7SB/
基于Aidlux的语义分割模型部署:https://www.bilibili.com/video/BV19u4y1c7k7/
#Aidlux##模型切换#