高并发场景题不会答?看看这些回答思路

我在面试校招同学的时候,发现大部分学生八股文都能答的很好,但一遇到场景题就要抠脑壳了,这个主要跟大家的工作经验相关,答不出来是正常的。但可以知道一些答题的方向,至少不至于一句话都说不出来,面试官也只是想看看知识面的广度。
今天主要分享高并发场景题的一些回答思路,希望对各位正在校招的同学有用哈。

如何理解高并发系统

所谓设计高并发系统,就是设计一个系统,保证它整体可用的同时,能够处理很高的并发用户请求,能够承受很大的流量冲击。 我们要设计高并发的系统,那就需要处理好一些常见的系统瓶颈问题,如内存不足、磁盘空间不足,连接数不够,网络宽带不够等等,以应对突发的流量洪峰。

1. 分而治之,横向扩展

如果你只部署一个应用,只部署一台服务器,那抗住的流量请求是非常有限的。并且,单体的应用,有单点的风险,如果它挂了,那服务就不可用了。 因此,设计一个高并发系统,我们可以分而治之,横向扩展。也就是说,采用分布式部署的方式,部署多台服务器,把流量分流开,让每个服务器都承担一部分的并发和流量,提升整体系统的并发能力。

2. 微服务拆分(系统拆分)

要提高系统的吞吐,提高系统的处理并发请求的能力。除了采用分布式部署的方式外,还可以做微服务拆分,这样就可以达到分摊请求流量的目的,提高了并发能力。 所谓的微服务拆分,其实就是把一个单体的应用,按功能单一性,拆分为多个服务模块。比如一个电商系统,拆分为用户系统、订单系统、商品系统等等。 图片

3. 分库分表

当业务量暴增的话,MySQL单机磁盘容量会撑爆。并且,我们知道数据库连接数是有限的。在高并发的场景下,大量请求访问数据库,MySQL单机是扛不住的!高并发场景下,会出现too many connections报错。
所以高并发的系统,需要考虑拆分为多个数据库,来抗住高并发的毒打。而假如你的单表数据量非常大,存储和查询的性能就会遇到瓶颈了,如果你做了很多优化之后还是无法提升效率的时候,就需要考虑做分表了。一般千万级别数据量,就需要分表,每个表的数据量少一点,提升SQL查询性能。
当面试官问要求你设计一个高并发系统的时候,一般都要说到分库分表这个点。

4. 池化技术

在高并发的场景下,数据库连接数可能成为瓶颈,因为连接数是有限的。
我们的请求调用数据库时,都会先获取数据库的连接,然后依靠这个连接来查询数据,搞完收工,最后关闭连接,释放资源。如果我们不用数据库连接池的话,每次执行SQL,都要创建连接和销毁连接,这就会导致每个查询请求都变得更慢了,相应的,系统处理用户请求的能力就降低了。
因此,需要使用池化技术,即数据库连接池、HTTP 连接池、Redis 连接池等等。使用数据库连接池,可以避免每次查询都新建连接,减少不必要的资源开销,通过复用连接池,提高系统处理高并发请求的能力。
同理,我们使用线程池,也能让任务并行处理,更高效地完成任务。大家可以看下我之前线程池的这篇文章,到时候面试官问到这块时,刚好可以扩展开来讲

5. 主从分离

通常来说,一台单机的MySQL服务器,可以支持500左右的TPS和10000左右的QPS,即单机支撑的请求访问是有限的。因此你做了分布式部署,部署了多台机器,部署了主数据库、从数据库。
但是,如果双十一搞活动,流量肯定会猛增的。如果所有的查询请求,都走主库的话,主库肯定扛不住,因为查询请求量是非常非常大的。因此一般都要求做主从分离,然后实时性要求不高的读请求,都去读从库,写的请求或者实时性要求高的请求,才走主库。这样就很好保护了主库,也提高了系统的吞吐。
当然,如果回答了主从分离,面试官可能扩展开问你主从复制原理,问你主从延迟问题等等,这块大家需要全方位复习好。

6. 使用缓存

无论是操作系统,浏览器,还是一些复杂的中间件,你都可以看到缓存的影子。我们使用缓存,主要是提升系统接口的性能,这样高并发场景,你的系统就可以支持更多的用户同时访问。
常用的缓存包括:Redis缓存,JVM本地缓存,memcached等等。就拿Redis来说,它单机就能轻轻松松应对几万的并发,你读场景的业务,可以用缓存来抗高并发。
缓存虽然用得爽,但是要注意缓存使用的一些问题:
缓存与数据库的一致性问题
缓存雪崩
缓存穿透
缓存击穿

7. CDN,加速静态资源访问

商品图片,icon等等静态资源,可以对页面做静态化处理,减少访问服务端的请求。如果用户分布在全国各地,有的在上海,有的在深圳,地域相差很远,网速也各不相同。为了让用户最快访问到页面,可以使用CDN。CDN可以让用户就近获取所需内容。

8. 消息队列,削锋

我们搞一些双十一、双十二等运营活动时,需要避免流量暴涨,打垮应用系统的风险。因此一般会引入消息队列,来应对高并发的场景。
假设你的应用系统每秒最多可以处理2k个请求,每秒却有5k的请求过来,可以引入消息队列,应用系统每秒从消息队列拉2k请求处理得了。 有些伙伴担心这样可能会出现消息积压的问题:
首先,搞一些运营活动,不会每时每刻都那么多请求过来你的系统(除非有人恶意攻击),高峰期过去后,积压的请求可以慢慢处理;
其次,如果消息队列长度超过最大数量,可以直接抛弃用户请求或跳转到错误页面;

9. ElasticSearch

Elasticsearch,大家都使用得比较多了吧,一般搜索功能都会用到它。它是一个分布式、高扩展、高实时的搜索与数据分析引擎,简称为ES。
我们在聊高并发,为啥聊到ES呢?因为ES可以扩容方便,天然支撑高并发。当数据量大的时候,不用动不动就加机器扩容,分库等等,可以考虑用ES来支持简单的查询搜索、统计类的操作。

10. 降级熔断

熔断降级是保护系统的一种手段。当前互联网系统一般都是分布式部署的。而分布式系统中偶尔会出现某个基础服务不可用,最终导致整个系统不可用的情况, 这种现象被称为服务雪崩效应。
比如分布式调用链路A->B->C
如果服务C出现问题,比如是因为慢SQL导致调用缓慢,那将导致B也会延迟,从而A也会延迟。堵住的A请求会消耗占用系统的线程、IO、CPU等资源。当请求A的服务越来越多,占用计算机的资源也越来越多,最终会导致系统瓶颈出现,造成其他的请求同样不可用,最后导致业务系统崩溃。
为了应对服务雪崩, 常见的做法是熔断和降级。最简单是加开关控制,当下游系统出问题时,开关打开降级,不再调用下游系统。还可以选用开源组件Hystrix来支持。

11. 限流

限流也是我们应对高并发的一种方案。我们当然希望,在高并发大流量过来时,系统能全部请求都正常处理。但是有时候没办法,系统的CPU、网络带宽、内存、线程等资源都是有限的。因此,我们要考虑限流。
如果你的系统每秒扛住的请求是一千,如果一秒钟来了十万请求呢?换个角度就是说,高并发的时候,流量洪峰来了,超过系统的承载能力,怎么办呢?
这时候,我们可以采取限流方案。就是为了保护系统,多余的请求,直接丢弃。
什么是限流:在计算机网络中,限流就是控制网络接口发送或接收请求的速率,它可防止DoS攻击和限制Web爬虫。限流,也称流量控制。是指系统在面临高并发,或者大流量请求的情况下,限制新的请求对系统的访问,从而保证系统的稳定性。
可以使用Guava的RateLimiter单机版限流,也可以使用Redis分布式限流,还可以使用阿里开源组件sentinel限流。

12. 异步

回忆一下什么是同步,什么是异步呢?以方法调用为例,它代表调用方要阻塞等待被调用方法中的逻辑执行完成。这种方式下,当被调用方法响应时间较长时,会造成调用方长久的阻塞,在高并发下会造成整体系统性能下降甚至发生雪崩。异步调用恰恰相反,调用方不需要等待方法逻辑执行完成就可以返回执行其他的逻辑,在被调用方法执行完毕后再通过回调、事件通知等方式将结果反馈给调用方。
因此,设计一个高并发的系统,需要在恰当的场景使用异步。如何使用异步呢?后端可以借用消息队列实现。比如在海量秒杀请求过来时,先放到消息队列中,快速响应用户,告诉用户请求正在处理中,这样就可以释放资源来处理更多的请求。秒杀请求处理完后,通知用户秒杀抢购成功或者失败。

13. 压力测试确定系统瓶颈

设计高并发系统,离不开最重要的一环,就是压力测试。就是在系统上线前,需要对系统进行压力测试,测清楚你的系统支撑的最大并发是多少,确定系统的瓶颈点,让自己心里有底,最好预防措施。 压测完要分析整个调用链路,性能可能出现问题是网络层(如带宽)、Nginx层、服务层、还是数据路缓存等中间件等等。
loadrunner是一款不错的压力测试工具,jmeter则是接口性能测试工具,都可以来做下压测。

14. 应对突发流量峰值:扩容+切流量

如果是突发的流量高峰,除了降级、限流保证系统不跨,我们可以采用这两种方案,保证系统尽可能服务用户请求:
扩容:比如增加从库、提升配置的方式,提升系统/组件的流量承载能力。比如增加MySQL、Redis从库来处理查询请求。
切流量:服务多机房部署,如果高并发流量来了,把流量从一个机房切换到另一个机房。

#面试##校招##面经#
全部评论

相关推荐

oppo 应用软开 22*15+0.5*12
拿到了ssp完美:真的坎坷,但是你至少拿到这么多offer了!
点赞 评论 收藏
分享
11-09 11:01
济南大学 Java
Java抽象带篮子:外卖项目真得美化一下,可以看看我的详细的外卖话术帖子
点赞 评论 收藏
分享
不愿透露姓名的神秘牛友
11-27 10:52
点赞 评论 收藏
分享
评论
13
84
分享
牛客网
牛客企业服务