集成学习方法——随机森林

之前我们介绍过决策树,随机森林(Random Forest)是将多个决策树(Decision Tree)组合在一起形成一个强大的分类器或回归器,是一种集成学习(Ensemble Learning)方法。

随机森林的主要思想是通过随机选择样本和特征来构建多个决策树,并通过集成这些决策树的预测结果来达到更准确的分类或回归结果。具体步骤如下:

随机选择部分训练样本集;

随机选择部分特征子集;

构建决策树,对每个节点进行特征选择和分裂;

再进行重复,构建多个决策树;

对每个决策树,根据投票或平均值等方法,获得最后的分类或回归结果。

具体而言,随机森林可以通过引入随机性来降低过拟合的风险,并增加模型的多样性。对于分类问题,随机森林采用投票机制来选择最终的类别标签;对于回归问题,随机森林采用平均值作为最终的输出。

随机森林相较于单个决策树具有以下优点:

准确性高:随机森林通过多个决策树的集成,可以减少单个决策树的过拟合风险,从而提高整体的准确性。

全部评论

相关推荐

昨天 09:49
已编辑
货拉拉_测试(实习员工)
热爱生活的仰泳鲈鱼求你们别卷了:没事楼主,有反转查看图片
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务