【大数据面试题】Spark-Streaming
1-Spark Streaming第一次运行不丢失数据
kafka参数 auto.offset.reset 参数设置成earliest 从最初始偏移量开始消费数据
2-Spark Streaming精准一次消费
- 手动维护偏移量
- 处理完业务数据后,再进行提交偏移量操作
极端情况下,如在提交偏移量时断网或停电会造成spark程序第二次启动时重复消费问题,所以在涉及到金额或精确性非常高的场景会使用事物保证精准一次消费
3-Spark Streaming控制每秒消费数据的速度
通过spark.streaming.kafka.maxRatePerPartition参数来设置Spark Streaming从kafka分区每秒拉取的条数
4-Spark Streaming背压机制
Spark Streaming 反压机制是1.5版本推出的特性,用来解决处理速度比摄入速度慢的情况,简单来讲就是做流量控制。当批处理时间(Batch Processing Time)大于批次间隔(Batch Interval,即 BatchDuration)时,说明处理数据的速度小于数据摄入的速度,持续时间过长或源头数据暴增,容易造成数据在内存中堆积,最终导致Executor OOM。
在这种情况下,若是基于Kafka Receiver的数据源,可以通过设置spark.streaming.receiver.maxRate来控制最大输入速率;
若是基于Direct的数据源(如Kafka Direct Stream),则可以通过设置spark.streaming.kafka.maxRatePerPartition来控制最大输入速率。
当然,在事先经过压测,且流量高峰不会超过预期的情况下,设置这些参数一般没什么问题。但最大值,不代表是最优值,最好还能根据每个批次处理情况来动态预估下个批次最优速率。在Spark 1.5.0以上,就可通过背压机制来实现。开启反压机制,即设置spark.streaming.backpressure.enabled为true,Spark Streaming会自动根据处理能力来调整输入速率,从而在流量高峰时仍能保证最大的吞吐和性能。
---Spark Streaming的反压机制中,有以下几个重要的组件:
- RateControllerRateController 组件是 JobScheduler 的监听器,主要监听集群所有作业的提交、运行、完成情况,并从 BatchInfo 实例中获取以下信息,交给速率估算器(RateEstimator)做速率的估算。
- 当前批次任务处理完成的时间戳 (processingEndTime)该批次从第一个 job 到最后一个 job 的实际处理时长 (processingDelay)该批次的调度时延,即从被提交到 JobScheduler 到第一个 job 开始处理的时长(schedulingDelay)该批次输入数据的总条数(numRecords)
- RateEstimatorSpark 2.x 只支持基于 PID 的速率估算器,这里只讨论这种实现。基于 PID 的速率估算器简单地说就是它把收集到的数据(当前批次速率)和一个设定值(上一批次速率)进行比较,然后用它们之间的差计算新的输入值,估算出一个合适的用于下一批次的流量阈值。这里估算出来的值就是流量的阈值,用于更新每秒能够处理的最大记录数
- RateLimiter以上这两个组件都是在Driver端用于更新最大速度的,而RateLimiter是用于接收到Driver的更新通知之后更新Executor的最大处理速率的组件。RateLimiter是一个抽象类,它并不是Spark本身实现的,而是借助了第三方Google的GuavaRateLimiter来产生的。它实质上是一个限流器,也可以叫做令牌,如果Executor中task每秒计算的速度大于该值则阻塞,如果小于该值则通过,将流数据加入缓存中进行计算。
反压机制真正起作用时需要至少处理一个批:由于反压机制需要根据当前批的速率,预估新批的速率,所以反压机制真正起作用前,应至少保证处理一个批。 * 如何保证反压机制真正起作用前应用不会崩溃:要保证反压机制真正起作用前应用不会崩溃,需要控制每个批次最大摄入速率。若为Direct Stream,如Kafka Direct Stream,则可以通过spark.streaming.kafka.maxRatePerPartition参数来控制。此参数代表了 每秒每个分区最大摄入的数据条数。假设BatchDuration为10秒,spark.streaming.kafka.maxRatePerPartition为12条,kafka topic 分区数为3个,则一个批(Batch)最大读取的数据条数为360条(3*12*10=360)。同时,需要注意,该参数也代表了整个应用生命周期中的最大速率,即使是背压调整的最大值也不会超过该参数。
5-Spark Streaming一个stage耗时
Spark Streaming stage耗时由最慢的task决定,所以数据倾斜时某个task运行慢会导致整个Spark Streaming都运行非常慢。
6-Spark Streaming优雅关闭
把spark.streaming.stopGracefullyOnShutdown参数设置成ture,Spark会在JVM关闭时正常关闭StreamingContext,而不是立马关闭
Kill 命令:yarn application -kill 后面跟 applicationid
7-Spark Streaming默认分区个数
Spark Streaming默认分区个数与所对接的kafka topic分区个数一致,Spark Streaming里一般不会使用repartition算子增大分区,因为repartition会进行shuffle增加耗时。
8-SparkStreaming有哪几种方式消费Kafka中的数据,它们之间的区别是什么?
一、基于Receiver的方式
这种方式使用Receiver来获取数据。Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的(如果突然数据暴增,大量batch堆积,很容易出现内存溢出的问题),然后Spark Streaming启动的job会去处理那些数据。
然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。
二、基于Direct的方式
这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。
优点如下:
简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。
高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。
一次且仅一次的事务机制。
三、对比:
基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。
基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。
在实际生产环境中大都用Direct方式
9-简述SparkStreaming窗口函数的原理(重点)
窗口函数就是在原来定义的SparkStreaming计算批次大小的基础上再次进行封装,每次计算多个批次的数据,同时还需要传递一个滑动步长的参数,用来设置当次计算任务完成之后下一次从什么地方开始计算。
图中time1就是SparkStreaming计算批次大小,虚线框以及实线大框就是窗口的大小,必须为批次的整数倍。虚线框到大实线框的距离(相隔多少批次),就是滑动步长。
#秋招##大数据#