题解 | #机器人的运动范围#
机器人的运动范围
https://www.nowcoder.com/practice/6e5207314b5241fb83f2329e89fdecc8
import java.util.*;
public class Solution {
public int movingCount(int threshold, int rows, int cols) {
int [][] matrix = new int[rows][cols];
int xlength = matrix.length;
int ylength = matrix[0].length;
int[][] visit = new int[rows][cols];
int[][] visitAll = new int[rows][cols];
Stack<int[]> stack = new
Stack ();//stack存路径,类似BFS广搜路径close表,但stack只存当前条路径,弹出后再存别条的路径,BFS的close表存所有经过的路径
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++) {
matrix[i][j] = sumWei(i) + sumWei(j);
}
int []xy = {0, 0};
visitAll[0][0] = 1;
stack.push(xy);
dfs(xy, stack, threshold, matrix, rows, cols, visit, visitAll);
stack.pop();
int sum = 0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (visitAll[i][j] == 1) {
sum++;
}
}
}
return sum;
}
public void dfs( int[] xy, Stack<int[]> stack, int threshold,
int matrix[][], int xlength, int ylength, int[][] visit, int[][] visitAll) {
if (!stack.isEmpty()) {
if (stack.size() > 0) {
for (int i = -1; i < 2; i++)
for (int j = -1; j < 2; j++) {
if (i != j &&
i != -1 * j) {//满足条件的i,j组合为{-1,0},{0,-1},{1,0},{0,1},即上下左右四个方向
int posX = stack.peek()[0] + i;
int posY = stack.peek()[1] + j;
if (posX < xlength && posX >= 0 && posY < ylength && posY >= 0) {
if (matrix[posX][posY] <= threshold && visit[posX][posY] == 0 ) {
visit[posX][posY] = 1;//只要访问过的就不再访问
visitAll[posX][posY] = 1;//标记能到达的点
int[] xyadd = {posX, posY};
stack.push(xyadd);
//递归之前的为本条递归的内容,直到尽头
dfs(xy, stack, threshold, matrix, xlength, ylength, visit, visitAll);
//递归之后(也是递归到达尽头后)的为下条递归设置的条件
//回溯,为另分一个分支接下来的递归设置条件,不是全部置空
// visit[posX][posY] = 0;只要访问过的就不再访问
stack.pop();
}
}
}
}
}
}
}
public int sumWei(int num) {
int sum = 0;
int numy = num % 10;
int numz = num / 10;
sum = sum + numy;
while (numz > 0) {
numy = numz % 10;
numz = numz / 10;
sum = sum + numy;
}
return sum;
}
}

