关于递归深度受限和堆栈溢出4种解决办法

# -*- coding: utf-8 -*-
"""
@Time    : 2023/1/19  019 下午 16:31
@Author  : Jan
@File    : 递归深度和堆栈溢出.py
"""
import sys
import types

""" {如下共四种解决办法} """


class TailRecurseException(BaseException):
    def __init__(self, args, kwargs):
        self.args = args
        self.kwargs = kwargs


def tail_call_optimized(g):
    """
    This function decorates a function with tail call
    optimization. It does this by throwing an exception
    if it is it's own grandparent, and catching such
    exceptions to fake the tail call optimization.

    This function fails if the decorated5
    function recurses in a non-tail context.
    """

    def func(*args, **kwargs):
        f = sys._getframe()
        if f.f_back and f.f_back.f_back and f.f_back.f_back.f_code == f.f_code:
            raise TailRecurseException(args, kwargs)
        else:
            while 1:
                try:
                    return g(*args, **kwargs)
                except TailRecurseException as e:
                    args = e.args
                    kwargs = e.kwargs

    func.__doc__ = g.__doc__
    return func


# 方法一:
# 尾递归优化,默认不带装饰器会超系统默认递归深度 1000
# sys.setrecursionlimit(3000)  # 可以修改默认递归深度
# threading.stack_size(12000000)  # 修改堆栈大小时需要单开进程,并且要结合上面递归深度一起设置才有效
@tail_call_optimized  # 使用时有个条件是返回递归函数外部不能带有计算表达式
def f0(i, res=0):
    if i == 0:
        return res + i
    return f0(i - 1, res + i)


result = f0(9999)
print(result, '----f0')


# 方法二:
# 用 while 循环代替
def f1(i, res=0):
    while i >= 0:
        res += i
        i -= 1
    return res


result = f1(9999)
print(result, '----f1')


# 方法三:
# 使用 “尾递归 + 生成器” 彻底解决堆栈溢出
def f_recursive(i, res=1):
    if i == 1:
        yield res
    yield f_recursive(i - 1, res + i)


def f_recursive_wapper(generator, i):
    gen = generator(i)
    while isinstance(gen, types.GeneratorType):
        gen = gen.__next__()
    return gen


result = f_recursive_wapper(f_recursive, 9999)
print(result, '----f_recursive')


# 应用测试效果
def advanced(a, b, c, d, k=0):  # k 是自增变量(如下 m-n 的值),可取值 0 - n ,直到满足条件
    # 原理是假设各自商为 m,n ,对各自乘以对方的除数,得到新除数为二者最小公倍数,故得知 acm+bc=cN,acn+ad=aN ,再带入其求差计算出 N 的通式
    x, y = divmod(a * c * k + b * c - a * d, c - a)
    if y == 0 and x > 0:
        yield x
    else:
        yield advanced(a, b, c, d, k + 1)


def f_recursive_wapper2(generator, a, b, c, d):
    gen = generator(a, b, c, d)
    while isinstance(gen, types.GeneratorType):
        gen = gen.__next__()
    return gen


a, b = [5, 4]
c, d = [7, 6]
e, f = [9, 8]
g, h = [11, 0]
x, y = a * c, f_recursive_wapper2(advanced, a, b, c, d)
x, y = e * x, f_recursive_wapper2(advanced, e, f, x, y)
x, y = g * x, f_recursive_wapper2(advanced, g, h, x, y)
N1 = f_recursive_wapper2(advanced, 1, 0, x, y)
for n in range(20):
    N = 1 * x * n + N1
    print(N, end=',')
print('----------4.1.1')

全部评论

相关推荐

服从性笔试吗,发这么多笔,现在还在发。
蟑螂恶霸zZ:傻 x 公司,发两次笔试,两次部门匹配挂,
投递金山WPS等公司10个岗位 >
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务