卷积神经网络高级篇
1,构造一个复杂的卷积神经网络:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )) # 均值和标准差
])
train_dataset = datasets.MNIST(
root='../dataset/mnist/',
train=True,
download=True,
transform=transform
)
train_loader = DataLoader(
train_dataset,
shuffle=True,
batch_size=batch_size
)
test_dataset = datasets.MNIST(
root='../dataset/mnist',
train=False,
download=True,
transform=transform
)
test_loader = DataLoader(
test_dataset,
shuffle=False,
batch_size=batch_size
)
# 构造复杂的神经网络模型
class InceptionA(torch.nn.Module):
def __init__(self,in_channels):
super(InceptionA,self).__init__()
self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)
self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)
self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)
def forward(self,x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x,kernel_size=3,stride=1,padding=1) # 平均池化 stride为步长
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1,branch5x5,branch3x3,branch_pool]
return torch.cat(outputs, dim = 1)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2 = torch.nn.Conv2d(88,20,kernel_size=5)
self.incep1 = InceptionA(in_channels=10)
self.incep2 = InceptionA(in_channels=20)
self.mp = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(1408,10)
def forward(self, x):
batch_size = x.size(0) # 执行完 x(batch_size,1,28,28)
x = F.relu(self.mp(self.conv1(x))) # 执行完 x 卷积完:(batch_size,10,24,24) -> 池化完:(batch_size,10,12,12)
x = self.incep1(x) # 执行完(batch_size,88,12,12)
x = F.relu(self.mp(self.conv2(x))) # 执行完 x 卷积完:(batch_size,20,8,8) -> 池化完:(batch_size,20,4,4)
x = self.incep2(x) # 执行完(batch_size,88,4,4)
x = x.view(batch_size,-1) # 88x4x4 =
x = self.fc(x)
return x
model = Net()
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr = 0.01, momentum=0.5) # 冲量0.5
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data # inputs : x target: y
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): # with语句下不执行梯度
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
# print(outputs)
_, predicted = torch.max(outputs.data, dim=1) # dim:维度1 两个返回值:最大概率值及其下标
# print(predicted)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
2,计算每一层输出的维度:
其余维度见代码注释。