卷积神经网络基础篇
1,使用卷积神经网络解决MNIST
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )) # 均值和标准差
])
train_dataset = datasets.MNIST(
root='../dataset/mnist/',
train=True,
download=True,
transform=transform
)
train_loader = DataLoader(
train_dataset,
shuffle=True,
batch_size=batch_size
)
test_dataset = datasets.MNIST(
root='../dataset/mnist',
train=False,
download=True,
transform=transform
)
test_loader = DataLoader(
test_dataset,
shuffle=False,
batch_size=batch_size
)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2 = torch.nn.Conv2d(10,20,kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320,10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size,-1)
x = self.fc(x)
return x
model = Net()
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr = 0.01, momentum=0.5) # 冲量0.5
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data # inputs : x target: y
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): # with语句下不执行梯度
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
# print(outputs)
_, predicted = torch.max(outputs.data, dim=1) # dim:维度1 两个返回值:最大概率值及其下标
# print(predicted)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
相比于直接把input数据展开,使用卷积可以提高1%(98-99)的准确率(在原来模型基础上,减少1/3的错误率)