softmax函数、MNIST数据集

1,处理多分类问题:

# 10月27
import torch
# criterion = torch.nn.CrossEntropyLoss()
# Y = torch.LongTensor([2,0,1])

# Y_pred1 = torch.Tensor([
#     [0.1,0.2,0.9],
#     [1.1,0.1,0.2],
#     [0.2,2.1,0.1]
# ])
# Y_pred2 = torch.Tensor([
#     [0.8,0.2,0.3],
#     [0.2,0.3,0.5],
#     [0.2,0.2,0.5]
# ])

# l1 = criterion(Y_pred1,Y)
# l2 = criterion(Y_pred2,Y)

# print(l1.data,l2.data)
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

batch_size = 64

transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307, ),(0.3081, )) # 均值和标准差
])

train_dataset = datasets.MNIST(
        root='../dataset/mnist/',
        train=True,
        download=True,
        transform=transform
)
train_loader = DataLoader(
    train_dataset,
    shuffle=True,
    batch_size=batch_size
)
test_dataset = datasets.MNIST(
    root='../dataset/mnist',
    train=False,
    download=True,
    transform=transform
)
test_loader = DataLoader(
    test_dataset,
    shuffle=False,
    batch_size=batch_size
)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1,784) # 改变张量的形状
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)
model = Net()

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr = 0.01, momentum=0.5) # 冲量0.5

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data # inputs : x   target: y
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad(): # with语句下不执行梯度
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            # print(outputs)
            _, predicted = torch.max(outputs.data, dim=1) # dim:维度1  两个返回值:最大概率值及其下标
            print(predicted)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

全部评论

相关推荐

10-24 11:10
山西大学 Java
若梦难了:哥们,面试挂是很正常的。我大中厂终面挂,加起来快10次了,继续努力吧。
点赞 评论 收藏
分享
我是小红是我:学校换成中南
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务