C++精通之路:红黑树的应用(模拟实现map/set)

@[toc]
> 很多小伙伴为了刷题发愁
> 今天为大家推荐一款刷题神奇哦:[刷题面试神器牛客](https://www.nowcoder.com/link/pc_csdncpt_xfh_sf)
> 各大互联网大厂面试真题。从基础到入阶乃至原理刨析类面试题 应有尽有,赶快来装备自己吧!助你面试稳操胜券,solo全场面试官

# 一:红黑树的迭代器
* 需要注意的是:

>1.  迭代器本质上是指针的一个封装的类,其底层就是指针;好处是可以方便遍历,是数据结构的底层实现与用户透明
>2. 对于string,vector,list等容器,其本身的结构上是比较简单的,迭代器的实现也很简单;但是对于二叉树结构的红黑树来说需要考虑很多的问题

## 1.begin()与end()

> STL明确规定,begin()与end()代表的是一段前闭后开的区间

> 对红黑树进行中序遍历后,可以得到一个有序的序列,因此begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置即nullptr

* 如图:
![在这里插入图片描述](https://img-blog.csdnimg.cn/c2f055d2a83a49b4a6e8a5470f267675.png)
## 2.operator++()与operator--()

* ++逻辑的实现:
1. 因为红黑树的中序是有序的,所以++是找到该节点在中序中的下一个节点
2. 因为中序是左中右,所以我们可以分为右子树存在和不存在来讨论下一个节点是谁

> 1. 当右子树存在时,右子树的最左节点即是下一个节点
> 2. 当右子树不存在时,我们需要向上寻找,因为中序是左中右的,所以该子树已经被遍历完了,则++操作后应该在该结点的祖先结点中找到孩子不在父亲右的祖先

* --的逻辑是一样的

### 代码实现:
* operator++()

```cpp
Self& operator++()
{
    if (_node->_right)//右子节点存在
    {
        //找到右子树中最左节点
        Node* cur = _node->_right;
        while (cur->_left)
        {
            cur = cur->_left;
        }
        _node = cur;
    }
    else//右子节点不存在,向上找
    {
        Node* cur = _node;//记录走过的节点
        Node* parent = _node->_parent;
        while (parent && parent->_right == cur)
        {
            cur = parent;
            parent = parent->_parent;
        }
        _node = parent;
    }
    return *this;
}

```
* operator--():

```cpp
Self& operator--()
{
    if (_node->_left)//左子节点存在
    {
        //找左子树中的最右节点
        Node* cur = _node->_left;
        while (cur->_right)
        {
            cur = cur->_right;
        }
        _node = cur;
    }
    else//左子节点不存在
    {
        Node* cur = _node;
        Node* parent = _node->_parent;
        while (parent && parent->_left == cur)
        {
            cur = parent;
            parent = parent->_parent;
        }
        _node = parent;
    }
    return *this;
}

```
## 反向迭代器适配器

> 因为反向迭代器与正向迭代器在原理实现中是相同的,只是方向反了而已
> 所以我们可以用正向迭代器来封装出反向迭代器,在正向迭代器的基础上,对其接口进行封装达到反向迭代器的效果

* 正向迭代器实现代码:

```cpp
template<class T, class Ref, class Ptr>
struct _TreeIterator
{
    //声明类型,便于反向迭代器对类型的提取
    typedef Ref reference;
    typedef Ptr pointer;
    typedef RBTreeNode<T> Node;
    typedef _TreeIterator<T, Ref, Ptr> Self;
    Node* _node;

    _TreeIterator(Node* node)
        :_node(node)
    {}

    Ref operator*()
    {
        return _node->_data;
    }

    Ptr operator->()
    {
        return &_node->_data;
    }

    bool operator==(const Self& it)const
    {
        return _node == it._node;
    }

    bool operator!= (const Self& it)const
    {
        return _node != it._node;
    }

    Self& operator++()
    {
        if (_node->_right)
        {
            Node* cur = _node->_right;
            while (cur->_left)
            {
                cur = cur->_left;
            }
            _node = cur;
        }
        else
        {
            Node* cur = _node;
            Node* parent = _node->_parent;
            while (parent && parent->_right == cur)
            {
                cur = parent;
                parent = parent->_parent;
            }
            _node = parent;
        }
        return *this;
    }

    Self& operator--()
    {
        if (_node->_left)
        {
            Node* cur = _node->_left;
            while (cur->_right)
            {
                cur = cur->_right;
            }
            _node = cur;
        }
        else
        {
            Node* cur = _node;
            Node* parent = _node->_parent;
            while (parent && parent->_left == cur)
            {
                cur = parent;
                parent = parent->_parent;
            }
            _node = parent;
        }

        return *this;
    }
};

```



* 反向迭代器实现代码:

```cpp
//适配器构造反向迭代器
template<class Iterator>
struct ReverseIterator
{
    //类型未实例化,无法取出里面的类型,此时需要使用typename:告诉编译器等实例化后再到类里面找对应的类型
    typedef typename Iterator::reference Ref;
    typedef typename Iterator::pointer Ptr;
    typedef ReverseIterator<Iterator> Self;

    Iterator _it;

    ReverseIterator(Iterator it)
        :_it(it)
    {}
    
    //在正向迭代器接口上进行封装复用   
    Ref operator*()
    {
        return *_it;
    }

    Ptr operator->()
    {
        return _it.operator->();
    }

    bool operator==(const Self& it)const
    {
        return it._it==_it;
    }

    bool operator!= (const Self& it)const//两个const
    {
        return _it != it._it;
    }

    Self& operator++()
    {
        --_it;
        return *this;
    }

    Self& operator--()
    {
        ++_it;
        return *this;
    }
};

```


# 二:改造红黑树来模拟实现map/set

> 因为set是K模型的容器,而map是KV模型的容器.所以要用红黑树来模拟实现这两个容器,需要添加一些东西使得其能适配两者,添加和改变的东西如下:

## 1. 节点的改变:

>对于红黑树的节点我们需要节点对于set来说储存key,对于map来说储存key-value键值对,所以这里我们就直接让节点类型的阈值类型为T,用来控制储存类型
* 代码的实现:

```cpp
template<class T>
struct RBTreeNode
{
    RBTreeNode<T>* _left;
    RBTreeNode<T>* _right;
    RBTreeNode<T>* _parent;

    T _data;//T可以是key也可以是pair<K,V>
    Colour _col;

    RBTreeNode(const T& data)
        :_left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _data(data)
        , _col(RED)
    {}
};

```

## 2. 主体的改变

```cpp
template<class K, class T>
class RBTree
{
    typedef RBTreeNode<T> Node;
public:
    //.......
private:
    Node* _root;
};

```

> K是用来比较的类型,T是用来存储的类型

* 这里就体现了对map和set的兼容。

> * 当为map时,传进来的T为pirpair<key,value>
> * 当为set时,传进来的T为K

* 达到了存储不同数据类型的目的

## 3. 添加仿函数来适配数据间的比较

> 在删除添加时,我们要进行节点中数据的比较,
> 当为map时,pirpair<key,value>与Kl类型无法比较时,这里就需要仿函数来帮助我们适配

* 对于不同容器我们需要不同的仿函数类型,由此在红黑树的模板列表中还需要一个模板类型参数,灵活控制传入的仿函数类型

> 仿函数的本质是创造一个类,通过operator()的重载来实现的,与函数重载类似,但在模板内,就只能使用仿函数来实现了。

* 红黑树框架:

```cpp
template<class K, class T, class KeyOfT>
class RBTree
{
    typedef RBTreeNode<T> Node;
public:
    //...
private:
    Node* _root;
};

```
* map实现框架:

```cpp
namespace cole
{
    template<class K, class V>
    class map
    {
        struct MapOfKey
        {
            const K& operator()(const pair<K, V>& kv)
            {
                return kv.first;
            }
        };
    public:
        //...
    private:
        RBTree<K, pair<const K, V>, MapOfKey> _t;
    };
}

```
* set实现框架:

```cpp
namespace cole
{
    template<class K>
    class set
    {
        struct SetOfKey
        {
            const K& operator()(const K& key)
            {
                return key;
            }
        };
    public:
        //...
    private:
        RBTree<K, K, SetOfKey> _t;
    };
}

```
* 仿函数使用示例:
Node* Find(const K& key)
{
    KeyOfT kot;
    Node* cur = _root;
    while (cur)
    {
        if (kot(cur->_kv.first) > key)
        {
            cur = cur->_left;
        }
        else if (kot(cur->_kv.first) < key)
        {
            cur = cur->_right;
        }
        else
        {
            return cur;
        }
    }
    return nullptr;
}


# 三:红黑树的封装与适配

* 代码:

```cpp
//颜***r /> enum Colour
{
    RED,
    BLACK,
};

template<class T>
struct RBTreeNode
{
    RBTreeNode<T>* _left;
    RBTreeNode<T>* _right;
    RBTreeNode<T>* _parent;

    T _data;//T可以是key也可以是pair<K,V>
    Colour _col;

    RBTreeNode(const T& data)
        :_left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _data(data)
        , _col(RED)
    {}
};

template<class K, class T, class KeyOfT>
class RBTree
{
    typedef RBTreeNode<T> Node;
public:
    typedef _TreeIterator<T, T&, T*> iterator;
    typedef _TreeIterator<T,const T&, const T*> const_iterator;
    typedef ReverseIterator<iterator> reverse_iterator;
    typedef ReverseIterator<const_iterator> reverse_const_iterator;

    RBTree()
        :_root(nullptr)
    {}

    ~RBTree()
    {
        _Destory(_root);
    }

    iterator begin()
    {
        Node* cur = _root;
        while (cur&&cur->_left)
        {
            cur = cur->_left;
        }
        return iterator(cur);
    }

    reverse_iterator rbegin()
    {
        Node* cur = _root;
        while (cur&&cur->_right)
        {
            cur = cur->_right;
        }
        return reverse_iterator(iterator(cur));
    }

    reverse_iterator rend()
    {
        return reverse_iterator(iterator(nullptr));
    }

    iterator end()
    {
        return iterator(nullptr);
    }

    Node* Find(const K& key)
    {
        KeyOfT kot;
        Node* cur = _root;
        while (cur)
        {
            if (kot(cur->_kv.first) > key)
            {
                cur = cur->_left;
            }
            else if (kot(cur->_kv.first) < key)
            {
                cur = cur->_right;
            }
            else
            {
                return cur;
            }
        }
        return nullptr;
    }

    pair<iterator, bool> Insert(const T& data)
    {
        //空树的情况
        if (_root == nullptr)
        {
            _root = new Node(data);
            _root->_col = BLACK;
            return make_pair(iterator(_root), true);
        }
        KeyOfT kot;
        //查找位置插入节点
        Node* cur = _root, * parent = _root;
        while (cur)
        {
            if (kot(cur->_data) > kot(data))
            {
                parent = cur;
                cur = cur->_left;
            }
            else if (kot(cur->_data) < kot(data))
            {
                parent = cur;
                cur = cur->_right;
            }
            else
            {
                return make_pair(iterator(cur), false);
            }
        }

        //创建链接节点
        cur = new Node(data);
        Node* newnode = cur;
        if (kot(parent->_data) > kot(data))
        {
            parent->_left = cur;
        }
        else
        {
            parent->_right = cur;
        }
        cur->_parent = parent;

        //父节点存在且为红,则需要调整(不能存在连续的红色节点)
        while (parent && parent->_col == RED)
        {
            //此时当前节点一定有祖父节点
            Node* granparent = parent->_parent;
            //具体调整情况主要看叔叔节点
            //分左右讨论
            if (parent == granparent->_left)
            {
                Node* uncle = granparent->_right;
                //情况1:叔叔节点存在且为红
                if (uncle && uncle->_col == RED)
                {
                    //修改颜色,继续向上检查
                    granparent->_col = RED;
                    parent->_col = uncle->_col = BLACK;

                    cur = granparent;
                    parent = cur->_parent;
                }
                else//情况2和3:叔叔节点不存在 或者存在且为黑
                {
                    //单旋(三代节点为斜线)+变***r />                     if (cur == parent->_left)
                    {
                        RotateR(granparent);

                        granparent->_col = RED;
                        parent->_col = BLACK;
                    }
                    else//双旋(三代节点为折线)+变***r />                     {
                        RotateL(parent);
                        RotateR(granparent);

                        cur->_col = BLACK;
                        granparent->_col = RED;
                    }
                    //旋转后不需再向上调整了
                    break;
                }
            }
            else//parent=grandparent->right
            {
                Node* uncle = granparent->_left;
                if (uncle && uncle->_col == RED)
                {
                    parent->_col = uncle->_col = BLACK;
                    granparent->_col = RED;

                    cur = granparent;
                    parent = cur->_parent;
                }
                else
                {
                    if (cur == parent->_right)
                    {
                        RotateL(granparent);

                        parent->_col = BLACK;
                        granparent->_col = RED;
                    }
                    else
                    {
                        RotateR(parent);
                        RotateL(granparent);

                        cur->_col = BLACK;
                        granparent->_col = RED;
                    }
                    break;
                }
            }
        }

        //确保根节点为黑
        _root->_col = BLACK;
        return make_pair(iterator(newnode), true);
    }

    bool IsRBTree()
    {
        if (_root == nullptr)
        {
            return true;
        }

        if (_root->_col == RED)
        {
            cout << "根节点为红色" << endl;
            return false;
        }

        int Blacknum = 0;
        Node* cur = _root;
        while (cur)
        {
            if (cur->_col == BLACK)
                Blacknum++;
            cur = cur->_left;
        }

        int i = 0;
        return _IsRBTree(_root, Blacknum, i);
    }

private:
    void _Destory(Node*& root)
    {
        if (root == nullptr)
            return;

        _Destory(root->_left);
        _Destory(root->_right);

        delete root;
        root = nullptr;
    }
    
    bool _IsRBTree(Node* root, int blacknum, int count)
    {
        if (root == nullptr)
        {
            if (blacknum == count)
                return true;
            cout << "各路径上黑色节点个数不同" << endl;
            return false;
        }

        if (root->_col == RED && root->_parent->_col == RED)
        {
            cout << "存在连续红色节点" << endl;
            return false;
        }

        if (root->_col == BLACK)
            count++;

        return _IsRBTree(root->_left, blacknum, count) && _IsRBTree(root->_right, blacknum, count);
    }

    void RotateL(Node* parent)
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;
        Node* parentP = parent->_parent;


        parent->_right = subRL;
        if (subRL)
        {
            subRL->_parent = parent;
        }

        subR->_left = parent;
        parent->_parent = subR;

        if (parent == _root)
        {
            _root = subR;
            subR->_parent = nullptr;
        }
        else
        {
            subR->_parent = parentP;
            if (parentP->_left == parent)
            {
                parentP->_left = subR;
            }
            else
            {
                parentP->_right = subR;
            }
        }
    }

    void RotateR(Node* parent)
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;
        Node* parentP = parent->_parent;


        parent->_left = subLR;
        if (subLR)
        {
            subLR->_parent = parent;
        }

        subL->_right = parent;
        parent->_parent = subL;

        if (parent == _root)
        {
            _root = subL;
            subL->_parent = nullptr;
        }
        else
        {
            subL->_parent = parentP;
            if (parentP->_left == parent)
            {
                parentP->_left = subL;
            }
            else
            {
                parentP->_right = subL;
            }
        }
    }

private:
    Node* _root;
};

```
# 四:map的封装和模拟实现
* 代码:

```cpp
namespace ymhh
{
    template<class K, class V>
    class map
    {
        struct MapOfKey
        {
            const K& operator()(const pair<K, V>& kv)
            {
                return kv.first;
            }
        };
    public:
        typedef typename RBTree<K, pair<const K, V>, MapOfKey>::iterator iterator;
        typedef typename RBTree<K, pair<const K, V>, MapOfKey>::reverse_iterator reverse_iterator;

        iterator begin()
        {
            return _t.begin();
        }

        iterator end()
        {
            return _t.end();
        }

        reverse_iterator rbegin()
        {
            return _t.rbegin();
        }

        reverse_iterator rend()
        {
            return _t.rend();
        }
        pair<iterator, bool> insert(const pair<const K, V>& kv)
        {
            return _t.Insert(kv);
        }

        V& operator[](const K& key)
        {
            pair<iterator, bool> ret = insert(make_pair(key, V()));
            return ret.first->second;
        }

        iterator find(const K& key)
        {
            return _t.Find(key);
        }

    private:
        RBTree<K, pair<const K, V>, MapOfKey> _t;
    };
}

```

# 五:     set的封装和模拟实现

* 代码:

```cpp
namespace ymhh
{
    template<class K>
    class set
    {
        struct SetOfKey
        {
            const K& operator()(const K& key)
            {
                return key;
            }
        };
    public:
        typedef typename RBTree<K,K, SetOfKey>::iterator iterator;
        typedef typename RBTree<K,K, SetOfKey>::reverse_iterator reverse_iterator;

        iterator begin()
        {
            return _t.begin();
        }

        iterator end()
        {
            return _t.end();
        }

        reverse_iterator rbegin()
        {
            return _t.rbegin();
        }

        reverse_iterator rend()
        {
            return _t.rend();
        }

        pair<iterator, bool> insert(const K& key)
        {
            return _t.Insert(key);
        }

        iterator find(const K& key)
        {
            return _t.Find(key);
        }

    private:
        RBTree<K, K, SetOfKey> _t;
    };
}

```


# 总结

> 因为红黑树的增删查改都是O(logN),所以用红黑树实现的map/set的增删查改也是O(logN),是个非常优秀的容器

全部评论
内核里面也有用红黑树的
点赞 回复 分享
发布于 2022-08-18 11:57 陕西

相关推荐

Natrium_:这时间我以为飞机票
点赞 评论 收藏
分享
评论
1
1
分享
牛客网
牛客企业服务