Pandas处理数据太慢,来试试Polars吧!
很多人在学习数据分析的时候,肯定都会用到Pandas这个库,非常的实用!
从创建数据到读取各种格式的文件(text、csv、json),或者对数据进行切片和分割组合多个数据源,Pandas都能够很好的满足。
当然Pandas也是有不足之处的,比如不具备多处理器,处理较大的数据集速度很慢。
今天给大家介绍一个新兴的Python库——Polars。
使用语法和Pandas差不多,处理数据的速度却比Pandas快了不少。
一个是大熊猫,一个是北极熊~
Polars是通过Rust编写的一个库,Polars的内存模型是基于Apache Arrow。
Polars存在两种API,一种是Eager API,另一种则是Lazy API。
其中Eager API和Pandas的使用类似,语法差不太多,立即执行就能产生结果。
而Lazy API就像Spark,首先将查询转换为逻辑计划,然后对计划进行重组优化,以减少执行时间和内存使用。
安装Polars,使用百度pip源。
# 安装polars pip install polars -i https://mirror.baidu.com/pypi/simple/
安装成功后,开始测试,比较Pandas和Polars处理数据的情况。
使用某网站注册用户的用户名数据进行分析,包含约2600万个用户名的CSV文件。
文件已上传公众号,获取方式见文末。
import pandas as pd df = pd.read_csv('users.csv') print(df)数据情况如下。
import pandas as pd df = pd.read_csv('fake_user.csv') print(df)
首先比较一下两个库的排序算法耗时。
import timeit import pandas as pd start = timeit.default_timer() df = pd.read_csv('users.csv') df.sort_values('n', ascending=False) stop = timeit.default_timer() print('Time: ', stop - start) ------------------------- Time: 27.555776743218303
可以看到使用Pandas对数据进行排序,花费了大约28s。
import timeit import polars as pl start = timeit.default_timer() df = pl.read_csv('users.csv') df.sort(by_column='n', reverse=True) stop = timeit.default_timer() print('Time: ', stop - start) ----------------------- Time: 9.924110282212496
Polars只花费了约10s,这意味着Polars比Pandas快了2.7倍。
下面,我们来试试数据整合的效果,纵向连接。
import timeit import pandas as pd start = timeit.default_timer() df_users = pd.read_csv('users.csv') df_fake = pd.read_csv('fake_user.csv') df_users.append(df_fake, ignore_index=True) stop = timeit.default_timer() print('Time: ', stop - start) ------------------------ Time: 15.556222308427095
使用Pandas耗时15s。
import timeit import polars as pl start = timeit.default_timer() df_users = pl.read_csv('users.csv') df_fake = pl.read_csv('fake_user.csv') df_users.vstack(df_fake) stop = timeit.default_timer() print('Time: ', stop - start) ----------------------- Time: 3.475433263927698
Polars居然最使用了约3.5s,这里Polars比Pandas快了4.5倍。
通过上面的比较,Polars在处理速度上表现得相当不错。
可以是大家在未来处理数据时,另一种选择~
当然,Pandas目前历时12年,已经形成了很成熟的生态,支持很多其它的数据分析库。
Polars则是一个较新的库,不足的地方还有很多。
如果你的数据集对于Pandas来说太大,对于Spark来说太小,那么Polars便是你可以考虑的一个选择。