Java并发编程-公平锁与非公平锁
公平,公平,还是tmd公平!
什么是公平和非公平
首先,我们来看下什么是公平锁和非公平锁。
公平锁指的是按照线程请求的顺序,来分配锁;
非公平锁指的是不完全按照请求的顺序,在一定情况下,可以允许插队。但需要注意这里的非公平并不是指完全的随机,不是说线程可以任意插队,而是仅仅“在合适的时机”插队。
那么什么时候是合适的时机呢?
假设当前线程在请求获取锁的时候,恰巧前一个持有锁的线程释放了这把锁,那么当前申请锁的线程就可以不顾已经等待的线程而选择立刻插队。但是如果当前线程请求的时候,前一个线程并没有在那一时刻释放锁,那么当前线程还是一样会进入等待队列。
为了能够更好的理解公平锁和非公平锁,我们举一个生活中的例子,假设我们还在学校读书,去食堂排队买饭,我排在队列的第二个,我前面还有一位同学,但此时我脑子里想的不是午饭,而是上午的一道数学题并陷入深思,所以当前面的同学打完饭之后轮到我时我走神了,并也没注意到现在轮到我了,此时前面的同学突然又回来插队,说“不好意思,阿姨麻烦给我加个鸡腿”,像这样的行为就可以类比我们的公平锁和非公平锁。
看到这里,你可能不解,为什么要设置非公平策略呢,而且非公平还是 ReentrantLock的默认策略,如果我们不加以设置的话默认就是非公平的,难道我的这些排队的时间都白白浪费了吗,为什么别人比我有优先权呢?
让我们考虑一种情况,假设线程 A 持有一把锁,线程 B 请求这把锁,由于线程 A 已经持有这把锁了,所以线程 B 会陷入等待,在等待的时候线程 B 会被挂起,也就是进入阻塞状态,那么当线程 A 释放锁的时候,本该轮到线程 B 苏醒获取锁,但如果此时突然有一个线程 C 插队请求这把锁。
那么根据非公平的策略,会把这把锁给线程 C,这是因为唤醒线程 B 是需要很大开销的,很有可能在唤醒之前,线程 C 已经拿到了这把锁并且执行完任务释放了这把锁。
相比于等待唤醒线程 B 的漫长过程,插队的行为会让线程 C 本身跳过陷入阻塞的过程,如果在锁代码中执行的内容不多的话,线程 C 就可以很快完成任务,并且在线程 B 被完全唤醒之前,就把这个锁交出去,这样是一个双赢的局面,对于线程 C 而言,不需要等待提高了它的效率,而对于线程 B 而言,它获得锁的时间并没有推迟,因为等它被唤醒的时候,线程 C 早就释放锁了,因为线程 C 的执行速度相比于线程 B 的唤醒速度,是很快的,所以 Java 设计者设计非公平锁,是为了提高整体的运行效率。
公平的场景
下面我们用图示来说明公平和非公平的场景,先来看公平的情况。假设我们创建了一个公平锁,此时有 4 个线程按顺序来请求公平锁,线程 1 在拿到这把锁之后,线程 2、3、4 会在等待队列中开始等待,然后等线程 1 释放锁之后,线程 2、3、4 会依次去获取这把锁,线程 2 先获取到的原因是它等待的时间最长。
不公平的场景
下面我们再来看看非公平的情况,假设线程 1 在解锁的时候,突然有线程 5 尝试获取这把锁,那么根据我们的非公平策略,线程 5 是可以拿到这把锁的,尽管它没有进入等待队列,而且线程 2、3、4 等待的时间都比线程 5 要长,但是从整体效率考虑,这把锁此时还是会交给线程 5 持有。
下面我们来用代码演示看下公平和非公平的实际效果,代码如下:
/** * 描述:演示公平锁,分别展示公平和不公平的情况,非公平锁会让现在持有锁的线程优先再次获取到锁。代码借鉴自Java并发编程实战手册2.7。 */ public class FairAndUnfair { public static void main(String args[]) { PrintQueue printQueue = new PrintQueue(); Thread thread[] = new Thread[10]; for (int i = 0; i < 10; i++) { thread[i] = new Thread(new Job(printQueue), "Thread " + i); } for (int i = 0; i < 10; i++) { thread[i].start(); try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } } } } class Job implements Runnable { private PrintQueue printQueue; public Job(PrintQueue printQueue) { this.printQueue = printQueue; } @Override public void run() { System.out.printf("%s: Going to print a job\n", Thread.currentThread().getName()); printQueue.printJob(new Object()); System.out.printf("%s: The document has been printed\n", Thread.currentThread().getName()); } } class PrintQueue { private final Lock queueLock = new ReentrantLock(false); public void printJob(Object document) { queueLock.lock(); try { Long duration = (long) (Math.random() * 10000); System.out.printf("%s: PrintQueue: Printing a Job during %d seconds\n", Thread.currentThread().getName(), (duration / 1000)); Thread.sleep(duration); } catch (InterruptedException e) { e.printStackTrace(); } finally { queueLock.unlock(); } queueLock.lock(); try { Long duration = (long) (Math.random() * 10000); System.out.printf("%s: PrintQueue: Printing a Job during %d seconds\n", Thread.currentThread().getName(), (duration / 1000)); Thread.sleep(duration); } catch (InterruptedException e) { e.printStackTrace(); } finally { queueLock.unlock(); } } }
我们可以通过改变 new ReentrantLock(false) 中的参数来设置公平/非公平锁。以上代码在公平的情况下的输出:
Thread 0: Going to print a job Thread 0: PrintQueue: Printing a Job during 5 seconds Thread 1: Going to print a job Thread 2: Going to print a job Thread 3: Going to print a job Thread 4: Going to print a job Thread 5: Going to print a job Thread 6: Going to print a job Thread 7: Going to print a job Thread 8: Going to print a job Thread 9: Going to print a job Thread 1: PrintQueue: Printing a Job during 3 seconds Thread 2: PrintQueue: Printing a Job during 4 seconds Thread 3: PrintQueue: Printing a Job during 3 seconds Thread 4: PrintQueue: Printing a Job during 9 seconds Thread 5: PrintQueue: Printing a Job during 5 seconds Thread 6: PrintQueue: Printing a Job during 7 seconds Thread 7: PrintQueue: Printing a Job during 3 seconds Thread 8: PrintQueue: Printing a Job during 9 seconds Thread 9: PrintQueue: Printing a Job during 5 seconds Thread 0: PrintQueue: Printing a Job during 8 seconds Thread 0: The document has been printed Thread 1: PrintQueue: Printing a Job during 1 seconds Thread 1: The document has been printed Thread 2: PrintQueue: Printing a Job during 8 seconds Thread 2: The document has been printed Thread 3: PrintQueue: Printing a Job during 2 seconds Thread 3: The document has been printed Thread 4: PrintQueue: Printing a Job during 0 seconds Thread 4: The document has been printed Thread 5: PrintQueue: Printing a Job during 7 seconds Thread 5: The document has been printed Thread 6: PrintQueue: Printing a Job during 3 seconds Thread 6: The document has been printed Thread 7: PrintQueue: Printing a Job during 9 seconds Thread 7: The document has been printed Thread 8: PrintQueue: Printing a Job during 5 seconds Thread 8: The document has been printed Thread 9: PrintQueue: Printing a Job during 9 seconds Thread 9: The document has been printed
可以看出,线程直接获取锁的顺序是完全公平的,先到先得。
而以上代码在非公平的情况下的输出是这样的:
Thread 0: Going to print a job Thread 0: PrintQueue: Printing a Job during 6 seconds Thread 1: Going to print a job Thread 2: Going to print a job Thread 3: Going to print a job Thread 4: Going to print a job Thread 5: Going to print a job Thread 6: Going to print a job Thread 7: Going to print a job Thread 8: Going to print a job Thread 9: Going to print a job Thread 0: PrintQueue: Printing a Job during 8 seconds Thread 0: The document has been printed Thread 1: PrintQueue: Printing a Job during 9 seconds Thread 1: PrintQueue: Printing a Job during 8 seconds Thread 1: The document has been printed Thread 2: PrintQueue: Printing a Job during 6 seconds Thread 2: PrintQueue: Printing a Job during 4 seconds Thread 2: The document has been printed Thread 3: PrintQueue: Printing a Job during 9 seconds Thread 3: PrintQueue: Printing a Job during 8 seconds Thread 3: The document has been printed Thread 4: PrintQueue: Printing a Job during 4 seconds Thread 4: PrintQueue: Printing a Job during 2 seconds Thread 4: The document has been printed Thread 5: PrintQueue: Printing a Job during 2 seconds Thread 5: PrintQueue: Printing a Job during 5 seconds Thread 5: The document has been printed Thread 6: PrintQueue: Printing a Job during 2 seconds Thread 6: PrintQueue: Printing a Job during 6 seconds Thread 6: The document has been printed Thread 7: PrintQueue: Printing a Job during 6 seconds Thread 7: PrintQueue: Printing a Job during 4 seconds Thread 7: The document has been printed Thread 8: PrintQueue: Printing a Job during 3 seconds Thread 8: PrintQueue: Printing a Job during 6 seconds Thread 8: The document has been printed Thread 9: PrintQueue: Printing a Job during 3 seconds Thread 9: PrintQueue: Printing a Job during 5 seconds Thread 9: The document has been printed
可以看出,非公平情况下,存在抢锁“插队”的现象,比如Thread 0 在释放锁后又能优先获取到锁,虽然此时在等待队列中已经有 Thread 1 ~ Thread 9 在排队了。
对比公平和非公平的优缺点
我们接下来对比公平和非公平的优缺点,如表格所示。
公平锁的优点在于各个线程公平平等,每个线程等待一段时间后,都有执行的机会,而它的缺点就在于整体执行速度更慢,吞吐量更小,相反非公平锁的优势就在于整体执行速度更快,吞吐量更大,但同时也可能产生线程饥饿问题,也就是说如果一直有线程插队,那么在等待队列中的线程可能长时间得不到运行。
源码分析
下面我们来分析公平和非公平锁的源码,具体看下它们是怎样实现的,可以看到在 ReentrantLock 类包含一个 Sync 类,这个类继承自AQS(AbstractQueuedSynchronizer),代码如下:
public class ReentrantLock implements Lock, java.io.Serializable { private static final long serialVersionUID = 7373984872572414699L; /** Synchronizer providing all implementation mechanics */ private final Sync sync; Sync 类的代码: abstract static class Sync extends AbstractQueuedSynchronizer {...}
根据代码可知,Sync 有公平锁 FairSync 和非公平锁 NonfairSync两个子类:
static final class NonfairSync extends Sync {...} static final class FairSync extends Sync {...}
下面我们来看一下公平锁与非公平锁的加锁方法的源码。
公平锁的锁获取源码如下:
protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && //这里判断了 hasQueuedPredecessors() compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) { throw new Error("Maximum lock count exceeded"); } setState(nextc); return true; } return false; }
非公平锁的锁获取源码如下:
final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { //这里没有判断 hasQueuedPredecessors() setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
通过对比,我们可以明显的看出公平锁与非公平锁的 lock() 方法唯一的区别就在于公平锁在获取锁时多了一个限制条件:hasQueuedPredecessors() 为 false,这个方法就是判断在等待队列中是否已经有线程在排队了。
这也就是公平锁和非公平锁的核心区别
如果是公平锁,那么一旦已经有线程在排队了,当前线程就不再尝试获取锁;
对于非公平锁而言,无论是否已经有线程在排队,都会尝试获取一下锁,获取不到的话,再去排队。
这里有一个特例需要我们注意,针对 tryLock() 方法,它不遵守设定的公平原则。
例如,当有线程执行 tryLock() 方法的时候,一旦有线程释放了锁,那么这个正在 tryLock 的线程就能获取到锁,即使设置的是公平锁模式,即使在它之前已经有其他正在等待队列中等待的线程,简单地说就是 tryLock 可以插队。
看它的源码就会发现:
public boolean tryLock() { return sync.nonfairTryAcquire(1); }
这里调用的就是 nonfairTryAcquire(),表明了是不公平的,和锁本身是否是公平锁无关。
综上所述,公平锁就是会按照多个线程申请锁的顺序来获取锁,从而实现公平的特性。非公平锁加锁时不考虑排队等待情况,直接尝试获取锁,所以存在后申请却先获得锁的情况,但由此也提高了整体的效率。
总结
非公平锁的设计初衷是为了提高性能,又get到一个知识点
转载自公众号Jerrycodes