腾讯笔试 8.23 后台&综合 AC 4
1. 链表
用cin会超时,改成scanf过了
#include <bits/stdc++.h> using namespace std; int main() { int n, k; scanf("%d%d", &n, &k); int val; for (int i = 1; i <= n; ++i) { scanf("%d", &val); if (i == k) continue; printf("%d ", val); } cout << endl; }
2.第k个子串
k<=5暴力就行 O(n)
#include <bits/stdc++.h> using namespace std; int main() { string s; int k; cin >> s; cin >> k; set<string> se; int n = s.size(); for (int i = 0; i < n; ++i) { for (int j = 1; j < 6; ++j) { if (i + j - 1 < n) { se.insert(s.substr(i, j)); if (se.size() > 5) se.erase(*se.rbegin()); } } } vector<string> res; for (auto i : se) res.push_back(i); cout << res[k - 1] << endl; }3. 拆数字
其中一个数字为n的最高为减一,其他位为9
如 :
24 = 19 + 6
144 = 99 + 45
#include <bits/stdc++.h> using namespace std; typedef long long LL; int s(LL n) { int res = 0; while (n) { res += n % 10; n /= 10; } return res; } int main() { int T; cin >> T; while (T--) { LL n; cin >> n; if (n < 10) { cout << n << endl; continue; } LL t = n; int digit = 0; while (t > 10) { t /= 10; digit++; } while (digit) { t *= 10; digit--; } int res = s(t - 1) + s(n - t + 1); cout << res << endl; } }4. 刷木板(代码不对,过了35%)
没AC
#include <bits/stdc++.h> using namespace std; const int maxn = 5010; int a[maxn]; int main() { int n; cin >> n; for (int i = 0; i < n; ++i) cin >> a[i]; int res = a[0]; for (int i = 1; i < n; ++i) { res += max(a[i] - a[i - 1] , 0); } res = min(res, n); cout << res << endl; }5. 查询子串回文串个数
区间dp
#include <bits/stdc++.h> using namespace std; const int maxn = 100005; int a[maxn][2]; int dp[405][405]; int inf = 0x3f3f3f3f; int main() { string s; cin >> s; int t; scanf("%d", &t); for (int i = 0; i < t; ++i) { cin >> a[i][0] >> a[i][1]; } int n = s.size(); memset(dp, 0x3f, sizeof(dp)); for (int i = 1; i <= n; ++i) { dp[i][i] = 1; if (i < n) { dp[i][i + 1] = s[i - 1] == s[i] ? 1 : 2; } } for (int len = 3; len <= n; ++len) { for (int l = 1; l + len - 1 <= n; ++l) { int r = l + len - 1; if (s[l - 1] == s[r - 1] && dp[l + 1][r - 1] == 1) { dp[l][r] = 1; continue; } for (int k = l; k < r; ++k) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } for (int i = 0; i < t; ++i) { int l = a[i][0], r = a[i][1]; cout << dp[l][r] << endl; } }