数据结构笔记7章

1. 顺序查找

说明:顺序查找适合于存储结构为顺序存储或链接存储的线性表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
复杂度分析:
查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
当查找不成功时,需要n+1次比较,时间复杂度为O(n);
所以,顺序查找的时间复杂度为O(n)。
C++实现源码:
int SequenceSearch(int a[], int value, int n)
{
    int i;
    for(i=0; i<n; i++)
        if(a[i]==value)
            return i;
    return -1;
}

2. 二分查找

说明:元素必须是有序的,如果是无序的则要先进行排序操作。

基本思想:也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。

复杂度分析:最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n)

C++实现源码:

//二分查找(折半查找),版本1
int BinarySearch1(int a[], int value, int n)
{
    int low, high, mid;
    low = 0;
    high = n-1;
    while(low<=high)
    {
        mid = (low+high)/2;
        if(a[mid]==value)
            return mid;
        if(a[mid]>value)
            high = mid-1;
        if(a[mid]<value)
            low = mid+1;
    }
    return -1;
}

//二分查找,递归版本
int BinarySearch2(int a[], int value, int low, int high)
{
    int mid = low+(high-low)/2;
    if(a[mid]==value)
        return mid;
    if(a[mid]>value)
        return BinarySearch2(a, value, low, mid-1);
    if(a[mid]<value)
        return BinarySearch2(a, value, mid+1, high);
}

3. 插值查找

在介绍插值查找之前,首先考虑一个新问题,为什么上述算法一定要是折半,而不是折四分之一或者折更多呢?
打个比方,在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。
同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。
经过以上分析,折半查找这种查找方式,不是自适应的(也就是说是傻瓜式的)。二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2*(high-low);
通过类比,我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])*(high-low),
也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
注:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
复杂度分析:查找成功或者失败的时间复杂度均为O(log2(log2n))。
C++实现源码:
//插值查找
int InsertionSearch(int a[], int value, int low, int high)
{
    int mid = low+(value-a[low])/(a[high]-a[low])*(high-low);
    if(a[mid]==value)
        return mid;
    if(a[mid]>value)
        return InsertionSearch(a, value, low, mid-1);
    if(a[mid]<value)
        return InsertionSearch(a, value, mid+1, high);
}
4. 斐波那契查找

基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:

1)相等,mid位置的元素即为所求

2)>,low=mid+1;

     3)<,high=mid-1。

斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;

 开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种

1)相等,mid位置的元素即为所求

2)>,low=mid+1,k-=2;

说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

3)<,high=mid-1,k-=1。

说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。

复杂度分析:最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。

C++实现源码:

// 斐波那契查找.cpp 

#include "stdafx.h"
#include <memory>
#include  <iostream>
using namespace std;

const int max_size=20;//斐波那契数组的长度

/*构造一个斐波那契数组*/ 
void Fibonacci(int * F)
{
    F[0]=0;
    F[1]=1;
    for(int i=2;i<max_size;++i)
        F[i]=F[i-1]+F[i-2];
}

/*定义斐波那契查找法*/  
int FibonacciSearch(int *a, int n, int key)  //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字
{
  int low=0;
  int high=n-1;
  
  int F[max_size];
  Fibonacci(F);//构造一个斐波那契数组F 

  int k=0;
  while(n>F[k]-1)//计算n位于斐波那契数列的位置
      ++k;

  int  * temp;//将数组a扩展到F[k]-1的长度
  temp=new int [F[k]-1];
  memcpy(temp,a,n*sizeof(int));

  for(int i=n;i<F[k]-1;++i)
     temp[i]=a[n-1];
  
  while(low<=high)
  {
    int mid=low+F[k-1]-1;
    if(key<temp[mid])
    {
      high=mid-1;
      k-=1;
    }
    else if(key>temp[mid])
    {
     low=mid+1;
     k-=2;
    }
    else
    {
       if(mid<n)
           return mid; //若相等则说明mid即为查找到的位置
       else
           return n-1; //若mid>=n则说明是扩展的数值,返回n-1
    }
  }  
  delete [] temp;
  return -1;
}

int main()
{
    int a[] = {0,16,24,35,47,59,62,73,88,99};
    int key=100;
    int index=FibonacciSearch(a,sizeof(a)/sizeof(int),key);
    cout<<key<<" is located at:"<<index;
    return 0;
}


#笔记#
全部评论

相关推荐

11-11 14:21
西京学院 C++
Java抽象练习生:教育背景放最前面,不要耍小聪明
点赞 评论 收藏
分享
10-25 23:12
门头沟学院 Java
点赞 评论 收藏
分享
点赞 9 评论
分享
牛客网
牛客企业服务