【有书共读】《TensorFlow实战》之 2-环境搭建

1、TensorFlow 依赖包介绍

1.1TensorFlow主要依赖包

TensorFlow主要依赖工具包Protocol Buffer和Bazel.
Protocol Buffer是谷歌开发的处理结构化数据的工具。除了Protocol Buffer,XML和JSON也是我们常见的结构化数据处理工具。下面以具体例子看看三者在形式上的不同。

  • XML
    <user>
    <name>张三</name>
    <id>12345</id>

    <email>zhangsan@abc.com</email>

  • JSON
    {
    "name": "张三",
      "id": "12345",
      "email": "zhangsan@abc.com"
    }
    本来只是想打个引号的,结果变成了引用。
  • Protocol
    message user{
    optional string name = 1;
      required int32 id = 2;
      repeated string email = 3;
    }
    这大括号里面的怎么也变成了引用?
    Protocol Buffer与XML和JSON的区别主要在于,Protocol Buffer序列化之后得到的数据不是可读的字符串,而是二进制流。Protocol Buffer序列化出来的数据要比XML格式的数据小3到10倍,解析时间要快20到100倍。TensorFlow中的数据都是通过Protocol Buffer来组织的,分布式TensorFlow的通信协议gRPC也是以Protocol Buffer作为基础的。

    1.2 Bazel

    Bazel是从谷歌开源的自动化构建工具。相比传统的Makefile,Ant或者Maven,Bazel在速度、可伸缩性、灵活性以及对不同程序语言和平台的支持上都要更加出色。
    Bazel通过项目空间workspace来管理源代码和编译输出结果。在项目空间内,Bazel通过BUILD文件来找到需要编译的目标。BUILD文件采用一种类似于Python的语法来指定每一个编译目标的输入、输出以及编译方式。

    2、TensorFlow安装

    本书介绍了3种安装方法:使用Docker安装,使用pip安装和从源代码编译安装。其中,详细介绍了在Ubantu/Linux 64-bit环境下,使用pip安装和从源代码安装的详细步骤。
    鄙人只有一台老式笔记本,win10系统。然后使用Anaconda作为辅助工具安装了python,并在此基础上安装了CPU-ONLY的Tensorflow.安装过程非常简单,按照官网步骤来即可。附上官网安装教程:https://www.tensorflow.org/install/install_windows
    下面,在cmd窗口中测试我们的tensorflow是否安装成功。
    图示表示安装成功
    从图中可以看出,TensorFlow例程输出了"Hello, TensorFlow"。安装成功。
    TensorFlow安装成功后,后续就可以大展身手了。期待后续的读书笔记。
#Go##笔记#
全部评论

相关推荐

有没有什么神仙小厂啊!想去,感觉对大厂去魅了
野猪不是猪🐗:小厂最大的问题就是,你不知道哪天公司就直接🈚️了。大厂被裁,拿着大厂履历也不难再找,小厂寄了那后面有没有人要你就不好说了
点赞 评论 收藏
分享
码农烧烤880:兄弟你是我今天看到的最好看的简历(我说的是简历风格跟简历书写)把985 211再搞亮一点。投boss就说;您好,我华科(985)研二在读,本科211。对您的岗位很感兴趣,希望能获得一次投递机会。
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务