京东笔试C++ 题解
第一题:求1~N的最小公倍数。把每个数字分解质因数,算他们每个质因数的贡献,然后乘起来。我的代码没写好(算质因数不用这么慢的)。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 100009
int fact[maxn];
bool prime[maxn];
ll mod = 987654321;
int cal(int t, int p) {
int cnt = 0;
while(t % p == 0) {
cnt++;
t /= p;
}
return cnt;
}
void first() {
memset(prime, true, sizeof(prime));
prime[1] = false;
for(int i = 2; i <= 100000; i++) {
int top = sqrt(i);
for(int j = 2; j <= top; j++) {
if(i % j == 0) {
prime[i] = false;
break;
}
}
}
}
void solve(int Limit) {
first();
for (int i = 2; i <= Limit; i++) {
int top = sqrt(i);
for (int j = 2; j <= top; j++) {
if(prime[j] && i % j == 0) {
fact[j] = max(fact[j], cal(i, j));
}
}
if(prime[i])
fact[i] = max(fact[i], 1);
}
}
int main() {
ll n;
cin>>n;
solve(n);
ll ans = 1;
for(ll i = 1; i <= n; i++) {
for(ll j = 1; j <= fact[i]; j++) {
ans = ans * i % mod;
}
}
cout<<ans<<endl;
return 0;
} 第二题:去掉字符串构成回文。其实是经典的求回文子序列个数。但是我觉得题意是有坑的,题意描述的感觉不是这个意思。记忆化搜索dp。也可以直接dp。方程:
f[i][j] = dfs(i, j - 1) + dfs(i + 1, j) - dfs(i + 1, j - 1);
if(str[i] == str[j])
f[i][j] += dfs(i + 1, j - 1) + 1;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll f[59][59];
string str;
ll dfs(int i, int j) {
if(i > j) {
return 0;
}
if(i == j) {
f[i][j] = 1;
return f[i][j];
}
if(f[i][j] != 0) {
return f[i][j];
}
f[i][j] = dfs(i, j - 1) + dfs(i + 1, j) - dfs(i + 1, j - 1);
if(str[i] == str[j])
f[i][j] += dfs(i + 1, j - 1) + 1;
return f[i][j];
}
int main() {
cin>>str;
int len = str.length();
cout<<dfs(0, len - 1)<<endl;
return 0;
} 第三题:象棋的马走K步之后到(X,Y)的方案数。直接递推。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[10][10][3];
ll mod = 1e9 + 7;
int dx[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
int dy[8] = {-1, -2, -2, -1, 1, 2, 2, 1};
int check(int x, int y) {
if(x >= 0 && x <= 8 && y >= 0 && y <= 8)
return true;
return false;
}
void cal(int x, int y, int state) {
dp[x][y][state] = 0;
for(int i = 0; i < 8; i++) {
int tx = x + dx[i];
int ty = y + dy[i];
if(check(tx, ty)) {
dp[x][y][state] = (dp[x][y][state] + dp[tx][ty][state ^ 1]) % mod;
}
}
}
int main() {
int K;
cin>> K;
int state = 0, nowstate;
dp[0][0][0] = 1;
while(K--) {
state = state ^ 1;
for(int i = 0; i <= 8; i++) {
for(int j = 0; j <= 8; j++) {
cal(i, j, state);
}
}
}
int x, y;
cin>>x>>y;
cout<<dp[x][y][state]<<endl;
return 0;
}#春招##实习##笔试题目#

