[PAT解题报告] The Largest Generation

简单题,给定一棵树——树是按照父子关系给出的,求节点个数最多的那层有多少个节点——保证这层是唯一的。并且认为根的层数为1。
因为数非空,并且规定了根是1号,我把id都减去1之后,就认为第0层是根。用d[]表示每个节点的层数,即深度。用num[]表示每层的节点数。别忘记初值d[0] = 1, num[1] = 1。
读入树结构的时候,我们记录每个节点x的父亲y,即f[x] = y。 则d[x] = d[y] + 1。我们dfs求出每个节点的深度——注意如果之前求过,递归可以直接返回,所以计算深度是O(n)的,相当于dfs整个树。我用了全局变量,没求过的深度暂且认为0。当然也可以从根直接dfs一次直接得到每个节点的深度,写起来比我现在这个稍微麻烦一点,总之可以求出每个节点的深度,顺便累加到num[d[x]]上面去,就能求出节点数最多的层了。

代码;

#include <cstdio>
#include <cstring>
#include <string>

using namespace std;

int f[105];
int d[105] = {1};
int num[105] = {0, 1};

int getd(int i) {
    return d[i]?d[i]:(d[i] = getd(f[i]) + 1);
}

int main() {
int n, m;
    for (scanf("%d%d", &n,&m);m;--m) {
        int x, i;
        scanf("%d%d",&x,&i);
        for (--x; i; --i) { 
            int y;
            scanf("%d", &y);
            f[y - 1] = x;
        }
    }
    m = 1;
    for (int i = 1; i < n; ++i) {
        int temp = getd(i);
        if (++num[temp] > num[m]) {
            m = temp;
        }
    }
    printf("%d %d\n", num[m], m);
    return 0;
}
原题链接: http://www.patest.cn/contests/pat-a-practise/1094
全部评论
想问下你那个getd()函数,如果把d数组都设为1什么时候会进入 d[i] = getd(f[i]) + 1
点赞 回复 分享
发布于 2016-09-12 21:59

相关推荐

点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务