题解 | #对称的二叉树#

对称的二叉树

http://www.nowcoder.com/practice/ff05d44dfdb04e1d83bdbdab320efbcb

描述

定一棵二叉树,判断其是否是自身的镜像(即:是否对称)


例如:
对称的

alt

不对称 alt

要求:空间复杂度 O(n),时间复杂度 O(n)


备注:你可以用递归和迭代两种方法解决这个问题


解法一:递归

子树对称条件:

  • 根节点相同
  • 左子树的左子树 和 右子树的右子树对称
  • 右子树的左子树 和 左子树的右子树对称

alt


/*
public class TreeNode {
    int val = 0;
    TreeNode left = null;
    TreeNode right = null;

    public TreeNode(int val) {
        this.val = val;

    }

}
*/
public class Solution {
    boolean isSymmetrical(TreeNode pRoot) {

        if (pRoot == null) {
            return true;
        }
        // 定义一个方法,判断左右子树是否镜像对称
        return mirror(pRoot.left, pRoot.right);
    }

    public boolean mirror(TreeNode left, TreeNode right) {
        // 1.如果左树和右边为空
        if (left == null && right == null) {
            return true;
        }

        // 2.如果左树或者右树其中一个为空
        if (left == null || right == null) {
            return false;
        }
        
        // 3.如果左右树都不为空
        if(left.val!=right.val){
            return false;
        }
        
        // 4.左右子树为空,且值相等,此时,说明,左右子树均存在,且,left=right。判断子树的子树是否对称
        boolean res =mirror(left.left,right.right)&&mirror(left.right,right.left);
        return res;
    }


}

复杂度分析

  • 时间复杂度:O(N)
  • 空间复杂度O(N)
全部评论

相关推荐

1 收藏 评论
分享
牛客网
牛客企业服务