【重排版】跟我一起写Makefile教程7(绝对经典,所有问题看这一篇足够了)

声明:
作者:陈浩
支持原创,请移步陈浩大神博客,但目前原网址只剩一部分了。
本文转载自GUYUEZHICHENG的博客, 该博客主要工作对原作者陈浩的系列文章的总汇加上标注。

本文工作:对该经典文章做了排版美化,并对部分冗余内容做了删减,更便于阅读。
下面请开始Enjoy吧!!!

【汇总贴教程1-6】跟我一起写Makefile教程

版本记录:
ver1.0  对目录结构用Markdown语言重写排版

【排版优化版】Makefile教程(绝对经典,所有问题看这一篇足够了)

四、注意事项

在进行函数库打包文件生成时,请小心使用make的并行机制("-j"参数)。如果多个ar命令在同一时间运行在同一个函数库打包文件上,就很有可以损坏这个函数库文件。所以,在make未来的版本中,应该提供一种机制来避免并行操作发生在函数打包文件上。但就目前而言,你还是应该不要尽量不要使用"-j"参数。

五、定义模式规则

你可以使用模式规则来定义一个隐含规则。一个模式规则就好像一个一般的规则,只是在规则中,目标的定义需要有"%"字符。"%"的意思是表示一个或多个任意字符。在依赖目标中同样可以使用"%",只是依赖目标中的"%"的取值,取决于其目标。

有一点需要注意的是,"%"的展开发生在变量和函数的展开之后,变量和函数的展开发生在make载入Makefile时,而模式规则中的"%"则发生在运行时。

1、模式规则介绍

模式规则中,至少在规则的目标定义中要包含"%",否则,就是一般的规则。目标中的"%“定义表示对文件名的匹配,”%“表示长度任意的非空字符串。例如:"%.c"表示以”.c"结尾的文件名(文件名的长度至少为3),而"s.%.c"则表示以"s.“开头,”.c"结尾的文件名(文件名的长度至少为 5)。

如果"%“定义在目标中,那么,目标中的”%“的值决定了依赖目标中的”%“的值,也就是说,目标中的模式的”%“决定了依赖目标中”%"的样子。例如有一个模式规则如下:

%.o : %.c ; <command ......>

其含义是,指出了怎么从所有的[.c]文件生成相应的[.o]文件的规则。如果要生成的目标是"a.o b.o",那么"%c"就是"a.c b.c"

一旦依赖目标中的"%"模式被确定,那么,make会被要求去匹配当前目录下所有的文件名,一旦找到,make就会规则下的命令,所以,在模式规则中,目标可能会是多个的,如果有模式匹配出多个目标,make就会产生所有的模式目标,此时,make关心的是依赖的文件名和生成目标的命令这两件事。

2、模式规则示例

下面这个例子表示了,把所有的[.c]文件都编译成[.o]文件.

%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

其中,"$@"表示所有的目标的挨个值,"$<“表示了所有依赖目标的挨个值。这些奇怪的变量我们叫"自动化变量”,后面会详细讲述。

下面的这个例子中有两个目标是模式的:

%.tab.c %.tab.h: %.y
bison -d $<

这条规则告诉make把所有的 .y 文件都以 bison -d <n>.y 执行,然后生成 <n>.tab.c<n>.tab.h 文件。(其中, <n> 表示一个任意字符串)。如果我们的执行程序 foo依赖于文件 parse.tab.oscan.o ,并且文件 scan.o 依赖于文件 parse.tab.h ,如果 parse.y 文件被更新了,那么根据上述的规则, bison -d parse.y 就会被执行一次,于是, parse.tab.oscan.o 的依赖文件就齐了。(假设, parse.tab.oparse.tab.c 生成,和 scan.oscan.c 生成,而 fooparse.tab.oscan.o 链接生成,而且 foo 和其 .o 文件的依赖关系也写好,那么,所有的目标都会得到满足)

3、自动化变量

在上述的模式规则中,目标和依赖文件都是一系例的文件,那么我们如何书写一个命令来完成从不同的依赖文件生成相应的目标?因为在每一次的对模式规则的解析时,都会是不同的目标和依赖文件。

自动化变量就是完成这个功能的。在前面,我们已经对自动化变量有所提涉,相信你看到这里已对它有一个感性认识了。所谓自动化变量,就是这种变量会把模式中所定义的一系列的文件自动地挨个取出,直至所有的符合模式的文件都取完了。这种自动化变量只应出现在规则的命令中。

下面是所有的自动化变量及其说明:

  • $@ : 表示规则中的目标文件集。在模式规则中,如果有多个目标,那么, $@ 就是匹配于目标中模式定义的集合。
  • $% : 仅当目标是函数库文件中,表示规则中的目标成员名。例如,如果一个目标是 foo.a(bar.o) , 那么, $% 就是 bar.o$@ 就是 foo.a 。如果目标不是函数库文件 (Unix下是 .a ,windows下是 .lib ),那么,其值为空。
  • $< : 依赖目标中的第一个目标名字。如果依赖目标是以模式(即 % )定义的,那么 $< 将是符合模式的一系列的文件集。注意,其是一个一个取出来的。
  • $? : 所有比目标新的依赖目标的集合。以空格分隔。
  • $^ : 所有的依赖目标的集合。以空格分隔。如果在依赖目标中有多个重复的,那么这个变量会去除 重复的依赖目标,只保留一份。
  • $+ : 这个变量很像 $^ ,也是所有依赖目标的集合。只是它不去除重复的依赖目标。
  • $* : 这个变量表示目标模式中 % 及其之前的部分。如果目标是 dir/a.foo.b ,并且目标的模式是 a.%.b ,那么, $* 的值就是 dir/a.foo 。这个变量对于构造有关联的文件名是比较有较。如果目标中没有模式的定义,那么 $* 也就不能被推导出,但是,如果目标文件的后缀是make所识别的,那么 $* 就是除了后缀的那一部分。例如:如果目标是 foo.c ,因为 .c 是make所能识别的后缀名,所以, $* 的值就是 foo 。这个特性是GNU make的,很有可能不兼容于其它版本的make,所以,你应该尽量避免使用 $* ,除非是在隐含规则或是静态模式中。如果目标中的后缀是make所不能识别的,那么 $* 就是空值。

当你希望只对更新过的依赖文件进行操作时,"$?"在显式规则中很有用,例如,假设有一个函数库文件叫"lib",其由其它几个object文件更新。那么把object文件打包的比较有效率的Makefile规则是:

lib : foo.o bar.o lose.o win.o
ar r lib $?

在上述所列出来的自动量变量中。四个变量($@、$<、$%、$*)在扩展时只会有一个文件,而另三个的值是一个文件列表。这七个自动化变量还可以取得文件的目录名或是在当前目录下的符合模式的文件名,只需要搭配上"D"或"F"字样。这是GNU make中老版本的特性,在新版本中,我们使用函数"dir"或"notdir"就可以做到了。"D"的含义就是Directory,就是目录,"F"的含义就是File,就是文件。

下面是对于上面的七个变量分别加上"D"或"F"的含义:

  • $(@D)
    表示 $@ 的目录部分(不以斜杠作为结尾),如果 $@ 值是 dir/foo.o ,那么$(@D) 就是 dir ,而如果 $@ 中没有包含斜杠的话,其值就是 . (当前目录)。

  • $(@F)
    表示 $@ 的文件部分,如果 $@ 值是 dir/foo.o ,那么 $(@F) 就是 foo.o$(@F) 相当于函数 $(notdir $@)

  • $(*D), $(*F)
    和上面所述的同理,也是取文件的目录部分和文件部分。对于上面的那个例子, $(*D) 返回 dir , 而 $(*F) 返回 foo

  • $(%D), $(%F)
    分别表示了函数包文件成员的目录部分和文件部分。这对于形同 archive(member) 形式的目标中的 member 中包含了不同的目录很有用。

  • $(<D), $(<F)
    分别表示依赖文件的目录部分和文件部分。

  • $(^D), $(^F)
    分别表示所有依赖文件的目录部分和文件部分。(无相同的)

  • $(+D), $(+F)
    分别表示所有依赖文件的目录部分和文件部分。(可以有相同的)

  • $(?D), $(?F)
    分别表示被更新的依赖文件的目录部分和文件部分。

最后想提醒一下的是,对于"$<",为了避免产生不必要的麻烦,我们最好给$后面的那个特定字符都加上圆括号,比如,"$(< )"就要比"$<"要好一些。

还得要注意的是,这些变量只使用在规则的命令中,而且一般都是"显式规则"和"静态模式规则"(参见前面"书写规则"一章)。其在隐含规则中并没有意义。

4、模式的匹配

一般来说,一个目标的模式有一个有前缀或是后缀的 % ,或是没有前后缀,直接就是一个 % 。因为 % 代表一个或多个字符,所以在定义好了的模式中,我们把 % 所匹配的内容叫做“茎”,例如%.c 所匹配的文件“test.c”中“test”就是“茎”。因为在目标和依赖目标中同时有 % 时,依赖目标的“茎”会传给目标,当做目标中的“茎”。

当一个模式匹配包含有斜杠(实际也不经常包含)的文件时,那么在进行模式匹配时,目录部分会首先移开,然后进行匹配,成功后,再把目录加回去。在进行“茎”的传递时,我们需要知道这个步骤。例如有一个模式e%t ,文件 src/eat 匹配于该模式,于是 src/a 就是其“茎”,如果这个模式定义在依赖目标中,而被依赖于这个模式的目标中又有个模式 c%r ,那么,目标就是 src/car 。(“茎”被传递)

5、重载内建隐含规则

你可以重载内建的隐含规则(或是定义一个全新的),例如你可以重新构造和内建隐含规则不同的命令,如:

%.o : %.c
$(CC) -c $(CPPFLAGS) $(CFLAGS) -D$(date)

你可以取消内建的隐含规则,只要不在后面写命令就行。如:

%.o : %.s

同样,你也可以重新定义一个全新的隐含规则,其在隐含规则中的位置取决于你在哪里写下这个规则。朝前的位置就靠前。

六、老式风格的"后缀规则"

后缀规则是一个比较老式的定义隐含规则的方法。后缀规则会被模式规则逐步地取代。因为模式规则更强更清晰。为了和老版本的Makefile兼容,GNU make同样兼容于这些东西。后缀规则有两种方式:“双后缀"和"单后缀”。

双后缀规则定义了一对后缀:目标文件的后缀和依赖目标(源文件)的后缀。如".c.o"相当于"%o : %c"。单后缀规则只定义一个后缀,也就是源文件的后缀。如".c"相当于"% : %.c"

后缀规则中所定义的后缀应该是make所认识的,如果一个后缀是make所认识的,那么这个规则就是单后缀规则,而如果两个连在一起的后缀都被make所认识,那就是双后缀规则。例如:".c"".o"都是make所知道。因而,如果你定义了一个规则是".c.o"那么其就是双后缀规则,意义就是".c" 是源文件的后缀,".o"是目标文件的后缀。如下示例:

.c.o:
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

后缀规则不允许任何的依赖文件,如果有依赖文件的话,那就不是后缀规则,那些后缀统统被认为是文件名,如:

.c.o: foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

这个例子,就是说,文件".c.o"依赖于文件"foo.h",而不是我们想要的这样:

%.o: %.c foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

后缀规则中,如果没有命令,那是毫无意义的。因为他也不会移去内建的隐含规则。而要让make知道一些特定的后缀,我们可以使用伪目标".SUFFIXES"来定义或是删除,如:

.SUFFIXES: .hack .win

把后缀.hack和.win加入后缀列表中的末尾。

.SUFFIXES:  		# 删除默认的后缀
.SUFFIXES: .c .o .h # 定义自己的后缀

先清楚默认后缀,后定义自己的后缀列表。make的参数"-r""-no-builtin-rules"也会使用得默认的后缀列表为空。而变量"SUFFIXE"被用来定义默认的后缀列表,你可以用".SUFFIXES"来改变后缀列表,但请不要改变变量"SUFFIXE"的值。

七、隐含规则搜索算法

比如我们有一个目标叫 T。下面是搜索目标T的规则的算法。请注意,在下面,我们没有提到后缀规则,原因是,所有的后缀规则在Makefile被载入内存时,会被转换成模式规则。如果目标是"archive(member)"的函数库文件模式,那么这个算***被运行两次,第一次是找目标T,如果没有找到的话,那么进入第二次,第二次会把"member"当作T来搜索。

  • 1、把T的目录部分分离出来。叫D,而剩余部分叫N。(如:如果T是"src/foo.o",那么,D就是"src/",N就是"foo.o")
  • 2、创建所有匹配于T或是N的模式规则列表。
  • 3、如果在模式规则列表中有匹配所有文件的模式,如"%",那么从列表中移除其它的模式。
  • 4、移除列表中没有命令的规则。
  • 5、对于第一个在列表中的模式规则:

1)推导其"茎"S,S应该是T或是N匹配于模式中"%“非空的部分。
2)计算依赖文件。把依赖文件中的”%“都替换成"茎"S。如果目标模式中没有包含斜框字符,而把D加在第一个依赖文件的开头。
3)测试是否所有的依赖文件都存在或是理当存在。(如果有一个文件被定义成另外一个规则的目标文件,或者是一个显式规则的依赖文件,那么这个文件就叫"理当存在”)
4)如果所有的依赖文件存在或是理当存在,或是就没有依赖文件。那么这条规则将被采用,退出该算法。

  • 6、如果经过第5步,没有模式规则被找到,那么就做更进一步的搜索。对于存在于列表中的第一个模式规则:

1)如果规则是终止规则,那就忽略它,继续下一条模式规则。
2)计算依赖文件。(同第5步)
3)测试所有的依赖文件是否存在或是理当存在。
4)对于不存在的依赖文件,递归调用这个算法查找他是否可以被隐含规则找到。
5)如果所有的依赖文件存在或是理当存在,或是就根本没有依赖文件。那么这条规则被采用,退出该算法。

  • 7、如果没有隐含规则可以使用,查看".DEFAULT"规则,如果有,采用,把".DEFAULT"的命令给T使用。

一旦规则被找到,就会执行其相当的命令,而此时,我们的自动化变量的值才会生成。

后序

————

终于到写结束语的时候了,以上基本上就是GNU make的Makefile的所有细节了。其它的产商的make基本上也就是这样的,无论什么样的make,都是以文件的依赖性为基础的,其基本是都是遵循一个标准的。

这篇文档中80%的技术细节都适用于任何的make,我猜测"函数"那一章的内容可能不是其它make所支持的,而隐含规则方面,我想不同的make会有不同的实现,我没有精力来查看GNU的make和VC的nmake、BCB的make,或是别的UNIX下的make有些什么样的差别,一是时间精力不够,二是因为我基本上都是在Unix下使用make,以前在SCO Unix和IBM的AIX,现在在Linux、Solaris、HP-UX、AIX和Alpha下使用,Linux和Solaris下更多一点。

不过,我可以肯定的是,在Unix下的make,无论是哪种平台,几乎都使用了Richard Stallman开发的make和cc/gcc的编译器,而且,基本上都是GNU的make(公司里所有的UNIX机器上都被装上了GNU的东西,所以,使用GNU的程序也就多了一些)。GNU的东西还是很不错的,特别是使用得深了以后,越来越觉得GNU的软件的强大,也越来越觉得GNU的在操作系统中(主要是Unix,甚至Windows)“杀伤力”。

对于上述所有的make的细节,我们不但可以利用make这个工具来编译我们的程序,还可以利用make来完成其它的工作,因为规则中的命令可以是任何Shell之下的命令,所以,在Unix下,你不一定只是使用程序语言的编译器,你还可以在Makefile中书写其它的命令,如:tar、awk、mail、sed、cvs、compress、ls、rm、yacc、rpm、 ftp……等等,等等,来完成诸如"程序打包"、“程序备份”、“制作程序安装包”、“提交代码”、“使用程序模板”、"合并文件"等等五花八门的功能,文件操作,文件管理,编程开发设计,或是其它一些异想天开的东西。

比如,以前在书写银行交易程序时,由于银行的交易程序基本一样,就见到有人书写了一些交易的通用程序模板,在该模板中把一些网络通讯、数据库操作的、业务操作共性的东西写在一个文件中,在这些文件中用些诸如"@@@N、###N"奇怪字串标注一些位置,然后书写交易时,只需按照一种特定的规则书写特定的处理,最后在make时,使用awk和sed,把模板中的"@@@N、###N"等字串替代成特定的程序,形成C文件,然后再编译。这个动作很像数据库的"扩展C"语言(即在C语言中用"EXEC SQL"的样子执行SQL语句,在用 cc/gcc编译之前,需要使用"扩展C"的翻译程序,如cpre,把其翻译成标准C)。如果你在使用make时有一些更为绝妙的方法,请记得告诉我啊。

回头看看整篇文档,不觉记起几年前刚刚开始在Unix下做开发的时候,有人问我会不会写Makefile时,我两眼发直,根本不知道在说什么。一开始看到别人在vi中写完程序后输入"!make"时,还以为是vi的功能,后来才知道有一个Makefile在作怪,于是上网查啊查,那时又不愿意看英文,发现就根本没有中文的文档介绍Makefile,只得看别人写的Makefile,自己瞎碰瞎搞才积累了一点知识,但在很多地方完全是知其然不知所以然。

后来开始从事UNIX下产品软件的开发,看到一个400人年,近200万行代码的大工程,发现要编译这样一个庞然大物,如果没有Makefile,那会是多么恐怖的一样事啊。于是横下心来,狠命地读了一堆英文文档,才觉得对其掌握了。但发现目前网上对Makefile介绍的文章还是少得那么的可怜,所以想写这样一篇文章,共享给大家,希望能对各位有所帮助。

现在我终于写完了,看了看文件的创建时间,这篇技术文档也写了两个多月了。发现,自己知道是一回事,要写下来,跟别人讲述又是另外一回事,而且,现在越来越没有时间专研技术细节,所以在写作时,发现在阐述一些细节问题时很难做到严谨和精练,而且对先讲什么后讲什么不是很清楚,所以,还是参考了一些国外站点上的资料和题纲,以及一些技术书籍的语言风格,才得以完成。

整篇文档的提纲是基于GNU的 Makefile技术手册的提纲来书写的,并结合了自己的工作经验,以及自己的学习历程。因为从来没有写过这么长,这么细的文档,所以一定会有很多地方存在表达问题,语言歧义或是错误。因些,我迫切地得等待各位给我指证和建议,以及任何的反馈。

最后,还是利用这个后序,介绍一下自己。我目前从事于所有Unix平台下的软件研发,主要是做分布式计算/网格计算方面的系统产品软件,并且我对于下一代的计算机***——网格计算非常地感兴趣,对于分布式计算、P2P、Web Service、J2EE技术方向也很感兴趣,同时,对于项目实施、团队管理、项目管理也小有心得,希望同样和我战斗在“技术和管理并重”的阵线上的年轻一代,能够和我多多地交流。

(全文完)

作者:陈浩
MSN:haoel@hotmail.com(常用)
QQ:753640(不常用)
注:请勿给我MSN的邮箱发信,由于hotmail的垃圾邮件导致我拒收这个邮箱的所有来信

全部评论

相关推荐

11-29 11:21
门头沟学院 Java
总包48.5w,意想不到的价格
想开了的垂耳兔很喜欢拱白菜:转人工
点赞 评论 收藏
分享
kyw_:接好运
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务