使用栈求 中缀/后缀/前缀 表达式的代码
目录
使用栈求中缀表达式的值的方法:
将数字存入一栈, 运算符存入另一栈. 入栈的运算符必须大于栈顶运算符的优先级才能入栈, 小于等于均将栈顶运算符出栈后计算处理. 如图作a(值为4)*=b(值为5)
从而得到a的值为20. 左括号类比栈底处理, 右括号类比原数组循环结束后, 排空运算符堆栈的操作.
实现代码如下(参考天勤代码):
#include <iostream>
#include <cmath>
using namespace std;
const int maxSize = 14;
const float Min = 1e-3;
int getPriority(char op)
{
switch (op)
{
case '+':
case '-':
return 0;
case '*':
case '/':
return 1;
}
}
int calSub(float num1, char op, float num2, float &result)
{
switch (op)
{
case '/':
if (fabs(num2) < Min)
return 0;
else
result = num1 / num2;
break;
case '*':
result = num1 * num2;
break;
case '+':
result = num1 + num2;
break;
case '-':
result = num1 - num2;
}
return 1;
}
int calTopTwo(float s1[], int &top1, char s2[], int &top2)
{
float num1, num2, result;
num2 = s1[top1--];
num1 = s1[top1--];
char op = s2[top2--];
int flag = calSub(num1, op, num2, result);
if (flag == 0)
{
cout << "Error";
}
s1[++top1] = result;
return flag;
}
float calInfix(char exp[])
{
float s1[maxSize];
int top1 = -1;
char s2[maxSize];
int top2 = -1;
int i = 0;
while (exp[i] != '\0')
{
if ('0' <= exp[i] && exp[i] <= '9')
{
s1[++top1] = exp[i] - '0';
i++;
}
else if (exp[i] == '(')
{
s2[++top2] = '(';
i++;
}
else if (exp[i] == '+' ||
exp[i] == '-' ||
exp[i] == '*' ||
exp[i] == '/')
{
if (top2 == -1 ||
s2[top2] == '(' ||
getPriority(exp[i]) > getPriority(s2[top2]))
{
s2[++top2] = exp[i];
i++;
}
else
{
int flag = calTopTwo(s1, top1, s2, top2);
if (flag == 0)
return 0;
}
}
else if (exp[i] == ')')
{
while (s2[top2] != '(')
{
int flag = calTopTwo(s1, top1, s2, top2);
if (flag == 0)
return 0;
}
i++;
top2--;
}
}
while (top2 != -1)
{
int flag = calTopTwo(s1, top1, s2, top2);
if (flag == 0)
return 0;
}
return s1[0];
}
int main()
{
char s1[14] = "1+2/4*(3+5*6)";
cout << calInfix(s1) << endl;
return 0;
}
/*结果
17.5
*/
使用栈求后缀表达式的方法
将数字和运算符均依次存入栈中, 在压入运算符时, 将栈顶两数字与运算符进行运算, 得到新数字并存回栈中(注意运算次序, 先入栈的在左, 栈顶在右). 具体过程参考此处 代码如下(自己写的野生代码):
#include <iostream>
using namespace std;
const int maxSize = 16;
const float Min = 1e-8;
float calPostFix(char exp[])
{
float s[maxSize];
int top = -1, i = 0;
while (exp[i] != '\0')
{
if ('0' <= exp[i] && exp[i] <= '9')
{
s[++top] = exp[i++]-'0';
}
else
{
switch (exp[i++])
{
case '+':
s[--top] += s[top];
break;
case '-':
s[--top] -= s[top];
break;
case '*':
s[--top] *= s[top];
break;
case '/':
if (s[top] < Min)
{
cout << "Error";
return 0;
}
s[--top] /= s[top];
}
}
}
return s[0];
}
int main()
{
char s[maxSize] = {'1', '2', '+', '5', '*'};
cout << calPostFix(s);
}
/*结果
15
*/
使用栈求前缀表达式的方法
此处求前缀表达式和后缀表达式的方法相似. 此处从右到左扫描, 在栈顶两数字顺序是先入栈在右, 栈顶在左
#include <iostream>
using namespace std;
const int maxSize = 16;
const float Min = 1e-8;
float calPreFix(char exp[], int len)
{
float s[maxSize];
int top = -1, i = len - 1;
while (i >= 0)
{
if ('0' <= exp[i] && exp[i] <= '9')
{
s[++top] = exp[i--] - '0';
}
else
{
switch (exp[i--])
{
case '+':
s[--top] = s[top] + s[top - 1];
break;
case '-':
s[--top] = s[top] - s[top - 1];
break;
case '*':
s[--top] = s[top] * s[top - 1];
break;
case '/':
if (s[top - 1] < Min)
{
cout << "Error";
return 0;
}
s[--top] = s[top] / s[top - 1];
}
}
}
return s[0];
}
int main()
{
char s[maxSize] = {'+', '3', '*', '4',
'*', '5', '+', '2', '3'};
cout << calPreFix(s, 9);
}
/*结果
103
*/
数据结构 文章被收录于专栏
数据结构大篇幅笔记记录